首页 | 本学科首页   官方微博 | 高级检索  
     

扁球壳的非线性固有频率
引用本文:王新志,韦朴. 扁球壳的非线性固有频率[J]. 兰州理工大学学报, 1987, 0(4)
作者姓名:王新志  韦朴
作者单位:Wang Xinzhi,Wei Pu
摘    要:本文用最小作用量原理推导出扁球壳大振幅时的变分方程,继之将协调方程化为两个方程,选取扁球壳中心最大振幅为摄动参数,采用摄动变分法,将非线性方程线性化,对周边固定的扁球壳进行了求解,一次近似得到了扁球壳线性固有频率,二次近似和三次近似得到了扁球壳的非线性固有频率。从本文特征关系式容易给出圆薄板的线性和非线性固有频率,给研究这方面的动力工程问题提供了有价值的参考。

关 键 词:振动参数  变分方程  协调方程

Non-linear Natural Frequencies of Shallow Spherical Shells
Wang Xinzhi,Wei Pu. Non-linear Natural Frequencies of Shallow Spherical Shells[J]. Journal of Lanzhou University of Technology, 1987, 0(4)
Authors:Wang Xinzhi  Wei Pu
Abstract:In this paper, based on the principle of minimum action quantity, the large amplitude variational equation of the shallow spherical shell is derived, and the compatible equation is divided into two equations. Taking the central maximum amplitude of the shallow spherical shell as the perturbation parameter, the nonlinear equation is linearized by the perturbation variational method, and the problem is solved under the condition of clamped edges. In the first-order approximation, the linear natural frequency of the shallow spherical shell is obtained. In the second and the third approximations,the non-linear natural frequency is derived. Moreover, it is quite easy to derive the linear and the non-linear natural frequencies of circular thin plates from the characteristic equation obtained in this paper. This paper provides the engineers concerned with a valuable reference.
Keywords:perturbation parameter  variational equation  compatible equation.
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号