首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure and mechanical properties of Cr doped WCoB based cermets by spark plasma sintering and first principle calculation
Abstract:WCoB based cermet is a potential hard alloy to replace WC-Co cermets with high hardness and corrosion resistance. WCoB based cermets with different Cr doping contents were fabricated by spark plasma sintering in liquid phase sintering stage. The densification behavior, phase composition, microstructure and mechanical properties of Cr doped WCoB cermets were investigated by XRD, EDS and SEM. Due to the lower density of Cr, the density of WCoB cermets decreased with the increasing of Cr doping content. The phase composition consisted of Cr doped WCoB, unreacted W, Co–Cr binary binder phase. When the doping content exceeded 11.736 wt%, the Cr enrichment zones appeared, which was harmful to the TRS. The increasing of Cr doping content contributed to the increase of unreacted W phases content and the formation of pores. The maximum value of Vickers hardness was 1751 Hv0.5 at 9.356 wt% Cr doping content. The variation trend was explained by first principle calculation, which is consistent with Hv-Zhou hardness model.
Keywords:WCoB based Cermets  Cr doping  Microstructure  Mechanical properties  First principle calculation  Spark plasma sintering
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号