首页 | 本学科首页   官方微博 | 高级检索  
     

基于三阶累积量奇异值分解的雷达目标识别
引用本文:周代英,沈晓峰,杨万麟. 基于三阶累积量奇异值分解的雷达目标识别[J]. 系统工程与电子技术, 2002, 24(3): 26-27
作者姓名:周代英  沈晓峰  杨万麟
作者单位:电子科技大学电子工程学院,四川,成都,610054
摘    要:基于一维距离像三阶累积量矩阵的奇异值分解 ,由非零奇异值构成奇异值矢量作为正则子空间法的输入 ,提出一种雷达目标一维距离像识别方法 ,对目标进行分类识别。该方法一方面利用三阶累积量提高了抗噪性能 ,同时又使用非零奇异值矢量减少了存储量与运算量。仿真实验结果表明 :在低信噪比 ,该方法的识别率高于特征子空间法

关 键 词:雷达目标识别  一维距离像  三阶累积量  奇异值矢量
文章编号:1001-506X(2002)03-0026-02
修稿时间:2001-03-19

Recognition of Radar Target Based on Singular Value Decomposition on Third-Order Cumulant Matrix
ZHOU Dai ying,SHEN Xiao feng,YANG Wan lin. Recognition of Radar Target Based on Singular Value Decomposition on Third-Order Cumulant Matrix[J]. System Engineering and Electronics, 2002, 24(3): 26-27
Authors:ZHOU Dai ying  SHEN Xiao feng  YANG Wan lin
Abstract:The novel approach of radar target recognition is proposed in this paper. This approach executes singular value decomposition (SVD) on third-order cumulant matrix. A vector formed by non-zero singular values, referred to singular value vector, is used as input vector of canonical subspace method for target classification. The third-order cumulant is used to improve the robustness to noise, and the singular value vector is used to reduce the memory and complicatedness. The simulated experimental results demonstrate the efficiency of the approach proposed in the paper.
Keywords:Radar target recognition  Range profile  Third-order cumulant  Singular value vector
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号