首页 | 本学科首页   官方微博 | 高级检索  
     

三维多项式微分系统在z轴附近的极限环
引用本文:高小云, 邢业朋. 三维多项式微分系统在z轴附近的极限环[J]. 上海师范大学学报(自然科学版), 2010, 39(3): 228-234
作者姓名:高小云   邢业朋
作者单位:上海师范大学,数理学院,上海,200234
基金项目:supported by Shanghai Municipal Education Cominission(10YZ74)
摘    要:考虑三维多项式微分系统x=-y(1+x)+ε(ax+F(x,y,z)),y=x(1+x)+ε(ay+c(x,y,z)),z=ε(cz+R(x,y,z))(F(0,0,z)=0,G(0,0,z)=0),利用一阶平均理论得到上面系统可以从x=-y(1+x),y=x(1+x),z=0的周期轨中分支出n2个极限环,最后用一个例子展示主要结果的简洁性和有效性.

关 键 词:平均值理论  极限环  Hopf分支

Limit cycles for a class of three-dimensional polynomial differential systems near the z-axis
GAO Xiao-yun,XING Ye-peng. Limit cycles for a class of three-dimensional polynomial differential systems near the z-axis[J]. Journal of Shanghai Normal University(Natural Sciences), 2010, 39(3): 228-234
Authors:GAO Xiao-yun  XING Ye-peng
Affiliation:GAO Xiao-yun,XING Ye-peng(Mathemtics and Science College,Shanghai Normal University,Shanghai 200234,China)
Abstract:We consider the following polynomial differential system of degree n in R3 near the z -axis x= -y(1+x) +ε(ax+F(x,y,z)),y=x(1+x) +ε(ay+G(x,y,z)),z =ε(cz+R(x,y,z) )(satisfying F(O,O,z) =0,G(0,0,z) =0). By applying the first-order averaging theory,we ob-tain at least n2 limit cycles bifurcating from the periodic orbits of the system x = - y ( 1 + x), y =x (1 + x), z= 0. An example is given to illustrate the simpleness and effectiveness of our main result.
Keywords:averaging theory  limit cycle  Hopf bifurcation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《上海师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海师范大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号