首页 | 本学科首页   官方微博 | 高级检索  
     

非齐次等式约束下奇异型线性回归模型的广义条件岭估计
引用本文:朱宁,赵肖肖,李绍波. 非齐次等式约束下奇异型线性回归模型的广义条件岭估计[J]. 汕头大学学报(自然科学版), 2012, 27(2): 54-62
作者姓名:朱宁  赵肖肖  李绍波
作者单位:桂林电子科技大学数学与计算科学学院,广西桂林,541004
基金项目:国家自然科学基金资助项目(71001015)
摘    要:文章对线性回归模型参数有偏估计做进一步研究,提出了在非齐次等式约束下奇异型线性回归模型参数的广义条件岭估计,并给出它的一些性质,而且证明了在一定条件下,在均方误差阵和广义均方误差意义下,广义条件岭估计都优于约束最小二乘估计.最后,通过实际数据进行实证分析,得到了取不同岭参数矩阵时对应的广义条件岭估计及其MSE,验证了广义条件岭估计优于约束最小二乘估计的充分条件的正确性.

关 键 词:最小二乘估计  约束最小二乘估计  广义条件岭估计  广义均方误差  均方误差阵

Generalized Conditional Ridge Estimation in Constrained Singular Linear Regression Model of Nonhomogeneous Equations
ZHU Ning,ZHAO Xiao-xiao,LI Shao-bo. Generalized Conditional Ridge Estimation in Constrained Singular Linear Regression Model of Nonhomogeneous Equations[J]. Journal of Shantou University(Natural Science Edition), 2012, 27(2): 54-62
Authors:ZHU Ning  ZHAO Xiao-xiao  LI Shao-bo
Affiliation:(School of Mathematics and Computational Science,Guilin University of Electronic Technology,Guilin 541004, Guangxi,China)
Abstract:The linear regression model parameter biased estimation is further researched.The generalized conditional ridge estimation is studied in constrained singular linear model of nonhomogeneous equations and some of its properties are given.It is proved that in certain conditions,general conditions of ridge estimators are better than theconstrained least squares estimator in the mean square error matrix and generalized mean square error sense.Finally,by conducting empirical analysis of the actual data,the corresponding generalized conditional ridge type estimation and its MSE are obtained when different ridge parameters are chosen.The sufficient condition that the generalized conditional ridge estimation excels the restricted least squares estimator is verified.
Keywords:least squares estimate  constrained least squares estimate  generalized conditional ridge estimator  general mean square error  mean square error matrix
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号