首页 | 本学科首页   官方微博 | 高级检索  
     

改进的非线性PCA方法及其在过程监控中的应用
引用本文:杨文婧,曹柳林. 改进的非线性PCA方法及其在过程监控中的应用[J]. 北京化工大学学报(自然科学版), 2008, 35(4): 95-99
作者姓名:杨文婧  曹柳林
作者单位:北京化工大学信息科学与技术学院,北京,100029;北京化工大学信息科学与技术学院,北京,100029
摘    要:
针对化工聚合反应过程的特点,结合小波分解多分辨率特性和独立元分析(ICA)提取个数较少的相互独立信号的优点,改进了基于自相关神经元网络的非线性主元分析(NLPCA)方法。在传统的非线性PCA方法中引入了独立元分析模块,不仅解决了自相关神经元网络中确定各层神经元个数的问题,而且以最少的独立元个数捕捉数据的非线性特征。多尺度监控可以识别各种幅值的故障,提高了监控效果。在此基础上,计算I2、I2e和SPE统计量用于故障检测。贡献图法用于识别故障变量。在聚酯生产过程上的仿真结果表明,改进后的方法比传统的非线性PCA方法更及时地检测到过程故障,运用贡献图可以有效地实现故障变量分离。

关 键 词:非线性PCA  独立元分析  故障检测  贡献图  聚合反应过程
收稿时间:2007-10-29

An improved nonlinear principal component analysis (PCA) strategy and its application in chemical process monitoring
YANG WenJing,CAI LiuLin. An improved nonlinear principal component analysis (PCA) strategy and its application in chemical process monitoring[J]. Journal of Beijing University of Chemical Technology, 2008, 35(4): 95-99
Authors:YANG WenJing  CAI LiuLin
Affiliation:College of Information Science and Technology,Beijing University of Chemical Technology, Beijing 100029, China
Abstract:
An improved nonlinear principal component analysis(NLPCA) strategy,based on an auto-associative neural network and combining the merits of wavelet analysis and independent component analysis(ICA),has been derived in order to study chemical polymerization processes.An ICA procedure was incorporated in order to capture the nonlinear characteristics with a minimum number of independent components.It was shown that multi-scale monitoring is effective in detecting different faults and leads to an increase in the reliability of process monitoring;I2,I2e and SPE statistics were subsequently constructed for fault detection.A contribution plot method was used to identify the faulty variables.The simulation results for a polyester process showed that the improved method can detect process faults earlier than traditional NLPCA,and that faulty variables can be indicated exactly by the contribution plot.
Keywords:nonlinear PCA  independent component analysis  fault detection  contribution plot  chemical polymeric process
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京化工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京化工大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号