首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism of magnesium activation of calcium-activated potassium channels
Authors:Shi Jingyi  Krishnamoorthy Gayathri  Yang Yanwu  Hu Lei  Chaturvedi Neha  Harilal Dina  Qin Jun  Cui Jianmin
Institution:Cardiac Bioelectricity Research and Training Center and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA.
Abstract:Large-conductance (BK type) Ca(2+)-dependent K(+) channels are essential for modulating muscle contraction and neuronal activities such as synaptic transmission and hearing. BK channels are activated by membrane depolarization and intracellular Ca(2+) and Mg(2+) (refs 6-10). The energy provided by voltage, Ca(2+) and Mg(2+) binding are additive in activating the channel, suggesting that these signals open the activation gate through independent pathways. Here we report a molecular investigation of a Mg(2+)-dependent activation mechanism. Using a combined site-directed mutagenesis and structural analysis, we demonstrate that a structurally new Mg(2+)-binding site in the RCK/Rossman fold domain -- an intracellular structural motif that immediately follows the activation gate S6 helix -- is responsible for Mg(2+)-dependent activation. Mutations that impair or abolish Mg(2+) sensitivity do not affect Ca(2+) sensitivity, and vice versa. These results indicate distinct structural pathways for Mg(2+)- and Ca(2+)-dependent activation and suggest a possible mechanism for the coupling between Mg(2+) binding and channel opening.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号