首页 | 本学科首页   官方微博 | 高级检索  
     

基于成长遗传算法的非线性模型预测控制及仿真
引用本文:阎镜予,陈薇,孙德敏. 基于成长遗传算法的非线性模型预测控制及仿真[J]. 系统仿真学报, 2007, 19(14): 3293-3297
作者姓名:阎镜予  陈薇  孙德敏
作者单位:1. 中国科学院香港中文大学深圳先进集成技术研究所智能仿生中心,深圳,518067;中国科学技术大学自动化系,合肥,230027
2. 中国科学技术大学自动化系,合肥,230027
摘    要:非线性预测控制在每个控制周期需要求取控制量,其实质为非线性优化问题。标准遗传算法时间消耗较大,难以用于控制周期较小的系统。首先证明了基于种子策略和精英保存策略的遗传算法能够保证闭环控制系统的渐进稳定性;继而模拟自然界成长过程,利用成长算子改进算法框架,并用爬山法进行实现。在具有强烈非线性的连续搅拌釜式反应器模型上进行仿真试验。试验结果表明,在不损失控制效果的情况下,成长遗传算法有效的降低了时间消耗。

关 键 词:成长遗传算法  非线性预测控制  时间消耗  连续搅拌釜式反应器
文章编号:1004-731X(2007)14-3293-05
收稿时间:2006-06-01
修稿时间:2006-06-012006-07-10

Nonlinear Model Predictive Control Based on Growth Genetic Algorithm and Simulation
YAN Jing-yu,CHEN Wei,SUN De-min. Nonlinear Model Predictive Control Based on Growth Genetic Algorithm and Simulation[J]. Journal of System Simulation, 2007, 19(14): 3293-3297
Authors:YAN Jing-yu  CHEN Wei  SUN De-min
Affiliation:1.Center for Intelligent System and Biomimetics, Shenzhen Institute of Advanced Integration Technology, CAS/CUHK, Shenzhen 518067, China; 2.Department of Automation, University of Science and Technology of China, Hefei 230027, China
Abstract:To calculate control sequence, nonlinear model predictive control involves optimization to a nonlinear programming problem. Suffered from the unsatisfied time consumption, simple genetic algorithm is not suit for the system with small control cycle. The stabilization of close-loop system with seed and elitism strategies was proved. By simulating the growth process in living nature, the structure of simple genetic algorithm was improved by growth operator, which was realized by the hill climbing method. Simulation results to the continuous stirred tank reactor model, which has strong nonlinear property, show that growth genetic algorithm decreases time consumption and obtains the same performance.
Keywords:growth genetic algorithm   nonlinear predictive control   time consumption   CSTR
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号