首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化算法的绳驱动连续体机器人轨迹规划
引用本文:王会肖,郑天江,沈雯钧,甄存合,方灶军,张苏英. 基于粒子群优化算法的绳驱动连续体机器人轨迹规划[J]. 河北科技大学学报, 2020, 41(5): 408-415. DOI: 10.7535/hbkd.2020yx05004
作者姓名:王会肖  郑天江  沈雯钧  甄存合  方灶军  张苏英
作者单位:河北科技大学电气工程学院,河北石家庄 050018;中国科学院宁波材料技术与工程研究所浙江省机器人与智能制造装备技术重点实验室,浙江宁波 315201,中国科学院宁波材料技术与工程研究所浙江省机器人与智能制造装备技术重点实验室,浙江宁波 315201,中国科学院宁波材料技术与工程研究所浙江省机器人与智能制造装备技术重点实验室,浙江宁波 315201;中国科学院大学材料科学与光电技术学院,北京 100049,河北科技大学电气工程学院,河北石家庄 050018
基金项目:国家自然科学基金(51705510); NSFC-浙江两化融合联合基金(U1909215); 中科院创新研究院资助项目(C2018005);宁波市科技创新2025重大专项(2018B10069)
摘    要:
为提高绳驱动连续体机器人运动的平滑性和稳定性,在关节空间和笛卡尔空间研究了基于样条函数和粒子群算法的轨迹规划问题。首先,采用双参数局部指数积公式建立连续体机器人的运动学模型;其次,根据牛顿-拉夫森迭代方法进行逆运动学求解;最后,基于自适应惯性权重的粒子群时间最优化算法结合五次B样条函数,分别实现了连续体机器人在关节空间和笛卡尔空间的轨迹规划。仿真结果表明:在相同的条件下,两种方法均可得到连续体机器人末端的连续轨迹,速度均小于10 mm/s,加速度均小于20 mm/s2;基于关节空间规划出的关节位移、速度、加速度曲线更为平滑,关节空间规划用时9.219 3 s,笛卡尔空间规划用时10.604 6 s。基于粒子群优化算法的绳驱动连续体机器人轨迹规划研究,提高了连续体机器人的运动性能,可为绳驱动连续体机器人的位姿规划提供参考。

关 键 词:机器人控制  连续体机器人  轨迹规划  笛卡尔空间  关节空间  粒子群优化算法
收稿时间:2020-07-16
修稿时间:2020-09-02

Trajectory planning of a cable-driven continuum robot based on particle swarm optimization algorithm
WANG Huixiao,ZHENG Tianjiang,SHEN Wenjun,ZHEN Cunhe,FANG Zaojun,ZHANG Suying. Trajectory planning of a cable-driven continuum robot based on particle swarm optimization algorithm[J]. Journal of Hebei University of Science and Technology, 2020, 41(5): 408-415. DOI: 10.7535/hbkd.2020yx05004
Authors:WANG Huixiao  ZHENG Tianjiang  SHEN Wenjun  ZHEN Cunhe  FANG Zaojun  ZHANG Suying
Abstract:
In order to improve the smoothness and stability of the motion of the cable-driven continuum robot, the trajectory planning methods based on spline function and particle swarm optimization algorithm were proposed for the cable-driven continuum robot in its joint space and Cartesian space respectively. Firstly, the kinematic model was established by applying the local product-of-exponential(POE) formula with two parameters. Secondly, the inverse kinematics was solved by Newton Raphson iterative method. Finally, the particle swarm time optimization algorithm based on adaptive inertia weight combing with the quintic B-spline function was used to realize the trajectory planning of the continuum robot in joint space and Cartesian space respectively. The simulation results show that continuous trajectories can be obtained both in joint space and Cartesian space under the same conditions, the obtained velocities are less than 10 mm/s, and the accelerations are less than 20 mm/s2.The joint displacement, velocity and acceleration curves are smoother in joint space, which takes 9.219 3 s, while it takes 10.604 6 s in Cartisian space. The research on trajectory planning of a cable-driven continuum robot based on particle swarm optimization algorithm improves the kinematic performance of the continuum robot and provides references for pose planning of the cable-driven continuum robots.
Keywords:robot control   continuum robot   trajectory planning   Cartesian space   joint space   particle swarm optimization(PSO) algorithm
本文献已被 万方数据 等数据库收录!
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号