首页 | 本学科首页   官方微博 | 高级检索  
     

复合KdV方程的行波解
引用本文:赵堂进,孙维君. 复合KdV方程的行波解[J]. 山东理工大学学报:自然科学版, 2004, 18(4): 97-101
作者姓名:赵堂进  孙维君
作者单位:[1]山东海上建港有限公司,山东石岛264300 [2]山东理工大学教务处,山东淄博255049
摘    要:基于齐次平衡法的思想,借助数学软件“Mathematia”,利用三角函数、双曲函数和吴消元法建立了四种寻找非线性偏微分方程行波解的方法,方法的基本原理是通过一些特殊的变换,将求方程行波解的问题转化为求代数方程的解问题,并且以复合KdV方程作为例子,介绍了方法及其步骤.提出的方法也可以用来寻找其它非线性偏微分方程的精确孤子解.

关 键 词:行波解 KdV方程 非线性偏微分方程 孤子解 齐次平衡法 双曲函数 吴消元法 三角函数 问题转化 方法
文章编号:1672-6197(2004)04-0097-05

Exact traveling wave solutions for new complex version of a coupled KdV equation
ZHAO Tang-jin,SUN Wei-jun. Exact traveling wave solutions for new complex version of a coupled KdV equation[J]. Journal of Shandong University of Technology:Science and Technology, 2004, 18(4): 97-101
Authors:ZHAO Tang-jin  SUN Wei-jun
Affiliation:ZHAO Tang-jin~1,SUN Wei-jun~2
Abstract:Based on the Homogeneous Balance Method,four methods to find exact traveling wave solutions of nonlinear partial differential equations are proposed by using trigonometric functions,hyperbolic functions and Mathematica software.The methods are illustrated by a new complex coupled KdV equation and as a result,many new exact traveling wave solutions are obtained.What is discussed in this essay can also be used to solve other nonlinear differential equations.
Keywords:nonlinear partial differential equation  trigonometric function  hyperbolic function
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号