首页 | 本学科首页   官方微博 | 高级检索  
     

基于生成对抗网络的半监督图像语义分割
引用本文:朱锋,刘其朋. 基于生成对抗网络的半监督图像语义分割[J]. 复杂系统与复杂性科学, 2021, 0(1)
作者姓名:朱锋  刘其朋
作者单位:青岛大学复杂性科学研究所
基金项目:国家自然科学基金(61503207)。
摘    要:提出了一种基于生成对抗网络的语义分割模型,包括一个全卷积语义分割网络以及一个判别网络,其中语义分割网络负责生成与输入图像对应的语义分割图,判别网络负责检测分割图与真实标签的区别,以促使分割网络改进分割效果。为了更好的提取全局结构信息,语义分割网络中采用了金字塔池化模块,对不同规模的空间区域进行池化操作。另外,为了应对语义分割训练数据集人工标注成本过高的问题,利用判别网络生成伪标签协助语义分割网络进行训练,从而实现了半监督训练效果。模型在PASCAL VOC2012数据集中进行了测试,结果表明该模型在全监督和半监督条件下均优于已有方法。

关 键 词:语义分割  生成对抗网络  金字塔池化  半监督训练

Semi-Supervised Semantic Segmentation Based on Generative Adversarial Networks
ZHU Feng,LIU Qipeng. Semi-Supervised Semantic Segmentation Based on Generative Adversarial Networks[J]. , 2021, 0(1)
Authors:ZHU Feng  LIU Qipeng
Affiliation:(Institute of Complexity Science, Qingdao University, Qingdao 266071, China)
Abstract:In this paper,we use generative adversarial network(GAN)to improve semantic segmentation of images.The model is composed of a semantic segmentation network and a discriminant network,where the segmentation network responses for generating semantic segmentation result while the discriminant network responses for detecting the difference between the generated result and the labels on the global structure level and improving the segmentation effect.In order to extract context information,we adopt the spatial pyramid pooling module in the segmentation network,which could perform pooling operation on multiple levels of sub-regions.Meanwhile,in order to solve the problem of a large number of manual annotations needed in the semantic segmentation data set,we use the discriminant network to generate pseudo labels and realize semi-supervision in the training of the segmentation network.The model has been tested using PASCAL VOC2012 dataset,and the results show that supervised and semi-supervised approaches proposed in this paper are superior to the existing methods.
Keywords:semantic segmentation  generative adversarial network  pyramid pooling  semi-supervision training
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号