首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应背景模型的动态场景目标检测
引用本文:邓晓博,朱青. 基于自适应背景模型的动态场景目标检测[J]. 世界科技研究与发展, 2010, 32(3): 275-276,295
作者姓名:邓晓博  朱青
作者单位:湖南大学电气与信息工程学院,长沙,410082
摘    要:背景建模一直是运动目标检测中的一个重要课题。该文提出一个适用于动态背景的基于非参数估计的前景背景对比模型。模型通过核函数估计的方法模拟了像素点五维特征向量的概率分布,并在图像序列中滚动更新。实验证明,上述算法能够在一般目标检测,特别是动态场景(摇动树枝等)的检测中取得较好的效果。

关 键 词:目标检测  核函数估计  区域分割  均值漂移

Object Detection in Nonstationary Scenes Based on Adaptive Background Models
DENG Xiaobo,ZHU Qing. Object Detection in Nonstationary Scenes Based on Adaptive Background Models[J]. World Sci-tech R & D, 2010, 32(3): 275-276,295
Authors:DENG Xiaobo  ZHU Qing
Affiliation:(College of Electrical and Information Engineering, Hunan University, Changsha 410082 )
Abstract:Background modeling is an important issue in accurate detection of moving objects. This paper presents a novel non - parametric- foreground - background model which explores the complex temporal and spatial dependencies in nonstationary scenes. The model estimates theprobability of observing pixels' five-dimensioned feature vector which represents its intensity values and spatial position information. The model isbuih and rolling-updated by kernel density estimation. Extensive experiments with nonstationary scenes demonstrate the utility and- performance of the proposed approach.
Keywords:object detection  kernel density estimation  region segmentation  mean shift
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号