首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机矩阵理论的局部放电脉冲快速检测方法
引用本文:徐友刚,陈敬德,陆敏安,曹基南,沈晓峰,罗林根. 基于随机矩阵理论的局部放电脉冲快速检测方法[J]. 科学技术与工程, 2021, 21(25): 10732-10736
作者姓名:徐友刚  陈敬德  陆敏安  曹基南  沈晓峰  罗林根
作者单位:国网上海市电力公司青浦供电公司,上海200437;上海交通大学电气工程系, 上海200240
摘    要:局部放电(partial discharge,PD)的检测是开展电力设备状态评估的重要手段之一.由于现场背景噪声及干扰信号影响,采集到的局部放电信号往往淹没在噪声中.噪声抑制算法是提高局部放电脉冲检测的有效方法,但这些噪声抑制算法往往需要针对所有采集的数据展开,当数据量特别大的时候将严重影响其实时性.因此,提出了一种基...

关 键 词:局部放电  脉冲  随机矩阵理论  时间序列  检测
收稿时间:2021-03-10
修稿时间:2021-08-24

Fast Detection Method of Partial Discharge Pulse Based on Random Matrix Theory
Xu Yougang,Chen Jingde,Lu Minan,Cao Jinan,Shen Xiaofeng,Luo Lingen. Fast Detection Method of Partial Discharge Pulse Based on Random Matrix Theory[J]. Science Technology and Engineering, 2021, 21(25): 10732-10736
Authors:Xu Yougang  Chen Jingde  Lu Minan  Cao Jinan  Shen Xiaofeng  Luo Lingen
Affiliation:Qingpu Power Supply Company,State Grid Shanghai Electric Power Company,Shanghai
Abstract:Partial discharge (PD) detection is one of the important means to carry out the condition assessment of power equipment. Due to the influence of noise and interference signal, the PD signals are often submerged in noise. The noise suppression algorithm is an effective method to improve PD pulse detection, however, the algorithms are often needed to be performed for all the collected data, which can affect the real-time of the proposed algorithms especially when the amount of data is very large. Therefore, in this paper, a new method for rapid detection of partial discharge (PD) pulse based on random matrix spectral distribution theory is proposed. Firstly, the PD time-domain signals received by UHF Sensors are used to construct a high-dimensional random matrix. According to the empirical spectrum distribution theory of time series model under the random matrix theory, the partial discharge pulse is detected in each time window. The simulation results show that the proposed method can quickly identify PD pulse of the data window.
Keywords:partial discharge   pulse   random matrix theory   time series   detection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号