首页 | 本学科首页   官方微博 | 高级检索  
     

基于证据数据分类算法的水声目标识别研究
作者姓名:杨蕊
作者单位:西安建筑科技大学机电工程学院
基金项目:陕西省教育厅专项科研计划项目
摘    要:证据分类算法已被广泛应用于模式识别中。针对传统证据近邻算法在证据权重和组合规则上的局限,研究了一种新的基于DSmT的证据K近邻识别算法(DSmT-KNN)。首先在水声目标的各类别训练模板库中,利用目标数据与各近邻的特征相似度来分别构造基本置信指派,并根据K个近邻数据的距离大小对构造的置信指派进行加权。然后利用DSmT规则对加权证据进行融合。最后根据每个类别下融合结果的算术平均值来判断目标的类别属性。通过水声目标实测数据实验,将DSmT-KNN与其他几种常见的方法进行了对比分析,结果表明新算法能有效提高系统的识别准确率。

关 键 词:水声目标 证据推理 K近邻 目标识别 DSmT
收稿时间:2015-06-01
修稿时间:2015-06-01
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号