首页 | 本学科首页   官方微博 | 高级检索  
     

非高斯型互相关随机数的发生技术
引用本文:殳伟群. 非高斯型互相关随机数的发生技术[J]. 同济大学学报(自然科学版), 2007, 35(6): 834-838
作者姓名:殳伟群
作者单位:同济大学,中德学院,上海,200092
基金项目:致谢:本文在形成过程中,得到德国博世公司的大力赞助,在此谨表感谢.
摘    要:在用蒙特卡罗法进行仿真研究(例如进行测量不确定度评定)时,常常需要发生多个非高斯型互相关的随机数.就这一问题,给出完整的解决方案:用Hermite展开式生成近似的非高斯变量,借助Cholesky分解建立各变量之间的相关性.方法的关键在于对互相关系数矩阵进行“预变形”,使Cholesky分解也适用于非高斯变量.此外,还利用Cholesky分解式下三角矩阵的特点,对矩调整和建立相关性两个过程进行解耦.给出了详细的算法说明.

关 键 词:非高斯互相关随机数的发生  蒙特卡罗法  Hermite多项式展开  Cholesky分解  测量不确定度评定
文章编号:0253-374X(2007)06-0834-05
修稿时间:2005-09-29

Generation Method of Correlated Non-Gaussian Random Variables
SHU Weiqun. Generation Method of Correlated Non-Gaussian Random Variables[J]. Journal of Tongji University(Natural Science), 2007, 35(6): 834-838
Authors:SHU Weiqun
Affiliation:Chinese-German School for Postgraduate Studies, Tongji University, Shanghai 200092, China
Abstract:In Monte Carlo simulation such as the measurement uncertainty evaluation, it is often necessary to generate correlated multi-non-Gaussian random observations. This paper presents a complete solution to this problem; approximately generating the non-Gaussian variable by the Hermite development, and setting up the cross-correlations between each variable-pair with the help of Cholesky decomposition. The key idea is the pre-deformation of the correlation-coefficient-matrix, which lets the Cholesky decomposition also be suitable to non-Gaussian variables. Besides, according to the characteristics of the under-triangle matrix of the Cholesky decomposition, the process of moment adjusting and correlation establishment are uncoupled. The whole algorithm is explained in detail.
Keywords:generation of correlated non-Gaussian variables   Monte Carlo Method   Hermite development   Cholesky decomposition   measurement uncertainty evaluation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号