首页 | 本学科首页   官方微博 | 高级检索  
     

基于均值迁移的粒子滤波算法研究
引用本文:黄莉静,于乃文,王敬涛. 基于均值迁移的粒子滤波算法研究[J]. 河北科技大学学报, 2014, 35(2): 184-188
作者姓名:黄莉静  于乃文  王敬涛
作者单位:河北科技大学信息科学与工程学院;河北科技大学理工学院;石家庄学院计算机系;
基金项目:河北省自然科学基金(F2012208004);河北省科技支撑计划项目(12210807)
摘    要:针对弱观测噪声环境下的粒子退化现象,特别是观测噪声较小时非线性非高斯的粒子滤波问题,提出了一种基于均值迁移的粒子滤波算法。首先,将核密度估计的无参快速模式匹配算法引入到粒子滤波中,并迭代计算概率密度估计。然后,利用均值迁移估计粒子梯度的方向,计算每个粒子移向其样本的均值。当粒子位置发生改变时,对重采样粒子进行加权处理。最后,根据本算法采样更新粒子集,有效地克服了粒子退化现象并提高了状态估计精度。

关 键 词:后验分布  密度估计  均值迁移  加权值  粒子滤波
收稿时间:2013-09-12
修稿时间:2013-11-03

Particle filter algorithm based on mean-shift
HUANG Lijing,YU Naiwen and WANG Jingtao. Particle filter algorithm based on mean-shift[J]. Journal of Hebei University of Science and Technology, 2014, 35(2): 184-188
Authors:HUANG Lijing  YU Naiwen  WANG Jingtao
Abstract:To cope with particle degeneracy with weak measurement noise, especially the particle filter problems of nonlinear/non-Gaussian when the measurement noise is smaller, a particle filter algorithm is proposed based on mean-shift. Firstly, non-parametric fast pattern matching algorithm of Kernel density estimation is introduced for particle filter, and the probability density estimation is iteratively calculated. Then, particle gradient direction and the mean value for each particle that moves to the sample are estimated by mean shift. When the position of particles is changed, the re-sampled particles are weightily processed. Finally, using the method to update particle sets overcomes the particle degradation effectively and improves the accuracy of state estimation.
Keywords:posterior distribution   density estimation   mean-shift   weighted value   particle filter
本文献已被 CNKI 等数据库收录!
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号