首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像分析的堆浸铀矿石颗粒参数辨识
引用本文:宁志刚,郝光鹏,程雄,沈文斌,丁德馨. 基于图像分析的堆浸铀矿石颗粒参数辨识[J]. 北京理工大学学报, 2018, 38(3): 300-304,312. DOI: 10.15918/j.tbit1001-0645.2018.03.013
作者姓名:宁志刚  郝光鹏  程雄  沈文斌  丁德馨
作者单位:南华大学 电气工程学院,湖南,衡阳 421001;南华大学 核资源工程学院,湖南,衡阳 421001
基金项目:国家自然科学基金资助项目,国家自然科学基金重大研究计划培育项目
摘    要:采用数字图像处理技术对铀矿石颗粒参数进行测量,并确定铀矿石块度分布.首次将图像引导滤波器应用于矿石图像滤波,较好地滤除了图像噪声和保持矿石边缘细节信息.采用基于最大类间后验交叉熵准则的PCNN图像分割算法分割矿石图像,减少了矿石粘连现象.为了解决第一次分割后矿石粘连现象,采用基于凹点匹配的数字图像切割算法对粘连的矿石图像进行第二次分割,能有效分离粘连矿石图像.采用基于形状特征的颗粒参数测量法测量颗粒参数,提高了颗粒参数的测量精度,得到了矿石块度的统计分布图.实验数据表明,该方法测量误差较小,能满足实际需求. 

关 键 词:颗粒参数  引导滤波  PCNN模型  凹点匹配  形状特征
收稿时间:2016-09-07

Parameters Identification of Particle Size of Heap Leaching Uranium Ore Based on Image Analysis
NING Zhi-gang,HAO Guang-peng,CHENG Xiong,SHEN Wen-bin and DING De-xin. Parameters Identification of Particle Size of Heap Leaching Uranium Ore Based on Image Analysis[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2018, 38(3): 300-304,312. DOI: 10.15918/j.tbit1001-0645.2018.03.013
Authors:NING Zhi-gang  HAO Guang-peng  CHENG Xiong  SHEN Wen-bin  DING De-xin
Affiliation:1. College of Electrical Engineering, University of South China, Hengyang, Hu'nan 421001, China;2. School of Nuclear Resource Engineering, University of South China, Hengyang, Hu'nan 421001, China
Abstract:Digital image processing technology was used to measure particle size of uranium ore fragmentation and determine particle size distribution.Image guided filter was applied to ore image filtering for the first time,which could filter image noise and preserve ore image edge information.PCNN image segmentation algorithm based on between-class posterior maximum cross entropy criterion was used to segment ore image,which could reduce ore adhesion phenomenon.In order to solve ore adhesion phenomenon after first image segmentation,a digital image cutting algorithm based on concave point matching was proposed to secondly segment adhesive ore image,which could effectively separate adhesion ore image.The parameter measurement method based on shape features was used to measure particle parameters,which could improve measurable accuracy of particle parameters.The statistical distribution charts of ore particle size were drawn with particle parameters.Experimental data show that the method can improve measure accuracy and satisfy with practical needs.
Keywords:particle parameter  image guided filtering  PCNN model  concave point matching  shape feature
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号