首页 | 本学科首页   官方微博 | 高级检索  
     

一类具有时滞的捕食与被捕食模型的稳定性和Hopf分支
引用本文:张新锋,陈斯养. 一类具有时滞的捕食与被捕食模型的稳定性和Hopf分支[J]. 云南师范大学学报(自然科学版), 2012, 32(1): 36-41
作者姓名:张新锋  陈斯养
作者单位:陕西师范大学数学与信息科学学院,陕西西安,710062
基金项目:国家自然科学基金资助项目(1087112260671063)
摘    要:研究了具有离散和连续时滞的Host-Parasitoid模型的Hopf分支问题.以时滞为参数,利用特征值理论给出了系统正平衡态的稳定性和Hopf分支存在的充分条件;通过举例验证了理论分析和数值计算的一致性.

关 键 词:捕食-被捕食时滞模型  稳定性  Hopf分支

Hopf Bifurcation and Stability for a Model With Delay of a Class of Host-Parasitoid
ZHANG Xin-feng , CHEN Si-yang. Hopf Bifurcation and Stability for a Model With Delay of a Class of Host-Parasitoid[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2012, 32(1): 36-41
Authors:ZHANG Xin-feng    CHEN Si-yang
Affiliation:(College of Mathematics and Information Science,Shanxi Normal University,Xian 710062,China)
Abstract:The Hopf bifurcation in Host-Parasitoid model with the distributed and discrete delay is investigated.With time lag as a parameter,sufficient conditions of the asymptotically stability of the model and of the existence of the hopf bifurcation by using the theory of characteristic value.some numerical examples supporting our theoretical predictions are also given.
Keywords:Host-Parasitoid delay system  Hopf bifurcation  stability  numerical analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号