首页 | 本学科首页   官方微博 | 高级检索  
     

简谐振子波函数的代数解及Hermite多项式的递推
引用本文:王帮美,胡先权
. 简谐振子波函数的代数解及Hermite多项式的递推
[J]. 重庆师范大学学报(自然科学版), 2009, 26(3): 119-122. DOI: 10.3969/J.ISSN.1672-6693.2009.03.029
作者姓名:王帮美  胡先权
作者单位:重庆师范大学,物理学与信息技术学院,重庆,400047
基金项目:重庆市教委基础理论研究基金 
摘    要:
简谐振子模型是量子力学中极其简单又重要的模型,其物理思想在其他相关的学科中都有着广泛的应用,通过多种途径去深入理解简谐振子模型,对理解量子力学的实质和运用量子力学作为工具去研究微观物理模型都有重要的意义;另一方面在实际工作中应用代数方法去求解力学量的本征值和波函数是研究量子力学的主要手段.以简谐振子为例,运用代数方法,先给出一维简谐振子的波函数,从而推广到多维简谐振子,并结合相应算符的对易关系给出Hermite多项式及其递推关系,回避了通过级数展开去求解Hermite方程的过程;同时指出<厄米本征值问题的探究>一文中的不足之处.

关 键 词:升降算符  简谐振子  波函数  Hermite多项式

Algebraic Approach to Wave Function of Harmonic Oscillator and Recursion Relations of Hermite Polynomial
Wang Bang-mei,Hu Xian-quan. Algebraic Approach to Wave Function of Harmonic Oscillator and Recursion Relations of Hermite Polynomial[J]. Journal of Chongqing Normal University:Natural Science Edition, 2009, 26(3): 119-122. DOI: 10.3969/J.ISSN.1672-6693.2009.03.029
Authors:Wang Bang-mei  Hu Xian-quan
Affiliation:Wang Bang-mei,HU Xian-quan(College of Physics , Information Technology,Chongqing Normal University,Chongqing 400047,China)
Abstract:
Harmonic oscillator model,the physical method of which enjoys wide application in other related courses is the simplest but the most important model in quantum mechanics.On one hand,profound understanding of harmonic oscillator model through various ways is crucial to understand the essence of quantum mechanics and research into micro physical models by means of quantum mechanics;on the other hand,the application of algebraic approach to solve the eigenvalues and wave function of mechanics is the main means...
Keywords:lowering operator and raising operator  harmonic oscillators  wave function  Hermite polynomials  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号