首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度熵和动态时间规整的步态身份识别
引用本文:何书芹,梁西银,颜昌林,郭贝,刘昊. 基于多尺度熵和动态时间规整的步态身份识别[J]. 重庆大学学报(自然科学版), 2018, 41(11): 84-91
作者姓名:何书芹  梁西银  颜昌林  郭贝  刘昊
作者单位:西北师范大学 物理与电子工程学院, 兰州 730070,西北师范大学 物理与电子工程学院, 兰州 730070,兰州真空设备有限责任公司华宇分公司, 兰州 730000,西北师范大学 物理与电子工程学院, 兰州 730070,西北师范大学 物理与电子工程学院, 兰州 730070
基金项目:甘肃省科技支撑计划项目(1304GKCA024);甘肃省科技重大专项计划资助项目(1602GKDA015)。
摘    要:针对现有人体步态身份识别算法单一、准确率较低的问题,提出了一种基于多尺度熵和动态时间规整(DTW,dynamic time warping)的人体步态身份识别方法。采用自制的APP软件在较低采样率下采集人体步行加速度数据,实验中共采集50名志愿者的正常行走加速度数据,使用多尺度熵算法进行数据处理,得到在各个尺度下的熵值,最后采用DTW算法对多尺度熵值进行特征匹配,得到的相对错误率(EER,equal error rate)为13.7%,仿真结果表明基于多尺度熵和DTW算法相结合的方法较好提高了身份识别的准确率,为人体步态身份识别提供了一个新的思路。

关 键 词:步态身份识别  生物特征身份识别  多尺度熵算法  动态时间规整
收稿时间:2018-05-20

New method for gait recognition on combinability of multi-scale entropy and dynamic time warping algorithm
HE Shuqin,LIANG Xiyin,YAN Changlin,GUO Bei and LIU Hao. New method for gait recognition on combinability of multi-scale entropy and dynamic time warping algorithm[J]. Journal of Chongqing University(Natural Science Edition), 2018, 41(11): 84-91
Authors:HE Shuqin  LIANG Xiyin  YAN Changlin  GUO Bei  LIU Hao
Affiliation:College of physics Electronic Engineering, Northwest Normal University, Lanzhou 730070, P. R. China,College of physics Electronic Engineering, Northwest Normal University, Lanzhou 730070, P. R. China,Lanzhou Vacuum Equipment Co., Ltd. Huayu Branch, Lanzhou 730000, P. R. China,College of physics Electronic Engineering, Northwest Normal University, Lanzhou 730070, P. R. China and College of physics Electronic Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
Abstract:In order to solve the problem of low accuracy of existing gait recognition, a method of gait recognition based on multi-scale entropy and DTW (dynamic time warping) algorithm is proposed. The new method for gait recognition adopts the camera and the high sampling rate sensor, and the acceleration sensor of the mobile phone is adopted to collect the data. The sensor works at the low sampling rate, and the normal walking acceleration data of 50 volunteers are collected and processed by multi-scale entropy, from which the entropy values at various scales are obtained. Finally, the DTW algorithm is used to match the multi-scale entropy. The simulation results show that the method based on the combination of multi-scale entropy and DTW improves the accuracy of identity recognition, and the EER(Equal Error Rate) is 13.7%, which provides a new idea for gait recognition.
Keywords:gait recognition  biometric identity identification  multi-scale entropy  dynamic time warping
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号