首页 | 本学科首页   官方微博 | 高级检索  
     

基于外心对偶剖分的有限体积元法
引用本文:孙凤芝,李永海. 基于外心对偶剖分的有限体积元法[J]. 吉林大学学报(理学版), 2005, 43(1): 37-44
作者姓名:孙凤芝  李永海
作者单位:吉林大学,数学学院信息与计算科学系,长春,130012;大庆师范学院数学系,大庆,163712;吉林大学,数学学院信息与计算科学系,长春,130012
基金项目:吉林大学创新基金(批准号:2004CX026).
摘    要:考虑基于外心对偶剖分的椭圆型与抛物型方程的有限体积元法. 设原始三角形剖分的任意三角形单元的重心Q和外心C的距离满足|QC|=O(h2), 在此条件下, 证明了二阶椭圆型方程基于外心对偶剖分的有限体积元法的L2误差估计, 以及抛物型方程基于外心对偶剖分的半离散和全离散有限体积元格式L2和H1误差估计.

关 键 词:三角形剖分  对偶剖分  有限体积元法  误差估计
文章编号:1671-5489(2005)01-0037-08
收稿时间:2004-07-08
修稿时间:2004-07-08

Finite Volume Element Method Based on Circumcenter Dual Subdivisions
SUN Feng-zhi. Finite Volume Element Method Based on Circumcenter Dual Subdivisions[J]. Journal of Jilin University: Sci Ed, 2005, 43(1): 37-44
Authors:SUN Feng-zhi
Affiliation:1. Department of Information and Computation, College of Mathematics, Jilin University, Changchun 130012, China;2. Department of Mathematics, Daqing Normal College, Daqing 163712, China
Abstract:We considered the finite volume element methods (FVM) based on circumcenter dual subdivision for the elliptic equations and parabolic equations. Let the primal triangular partition satisfy the restrictive condition, that is, the distances between the barycenter Q and the circumcenter C of any triangle element satisfy |QC|=O(h~2), under this condition, firstly we have obtained the optimal L~2 error estimates of the finite (volume) element method based on circumcenter dual subdivision for the elliptic equation, furthermore we have also proved the optimal L~2 and H~1 error estimates of the semi-discrete and fully-discrete finite volume element (method) based on circumcenter dual subdivision for parabolic equation.
Keywords:triangular subdivision  dual subdivision  finite volume element method  error estimate
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号