首页 | 本学科首页   官方微博 | 高级检索  
     

基于RWG基函数和LL基函数的电磁场积分方程矩量法对比
引用本文:张雪峰,李会容,赵延文,闫珉. 基于RWG基函数和LL基函数的电磁场积分方程矩量法对比[J]. 四川大学学报(自然科学版), 2009, 46(4): 1025-1030
作者姓名:张雪峰  李会容  赵延文  闫珉
作者单位:攀枝花学院材料工程学院,攀枝花,617000,;攀枝花学院电气信息工程学院,攀枝花,617000;电子科技大学电子工程学院,成都,610054,;成都理工大学信息工程学院,成都,610059
基金项目:国家自然科学基金(60571022)
摘    要:利用基于Rao-Wihon-Glisson(RWG)基函数和双线性(LL)基函数的矩量法求解了任意形状理想导体目标的电磁场积分方程.通过几个计算实例的比较表明,在相同或类似的计算量的情况下,LL基函数比RWG基函数更为完备地描述实际的电流分布,并具有更高的求解精度和更快的收敛特性;同时,仅需作很小的改动,就可以将基于RWG基函数的矩量法程序改写成基于LL基函数的矩量法程序.

关 键 词:电磁场积分方程  矩量法  RWG基函数  LL基函数
修稿时间:2009-03-04

A Comparison between the RWG Basis Functions and LL Basis Functions for the Method of Moment of Electromagnetic Integral Equation
ZHANG Xue-Feng,LI Hui-Rong,ZHAO Yan-Wen and YAN Min. A Comparison between the RWG Basis Functions and LL Basis Functions for the Method of Moment of Electromagnetic Integral Equation[J]. Journal of Sichuan University (Natural Science Edition), 2009, 46(4): 1025-1030
Authors:ZHANG Xue-Feng  LI Hui-Rong  ZHAO Yan-Wen  YAN Min
Affiliation:College of Material Engineering, University of Panzhihua;The Information and Electrical Engineering College;School of Electronic Engineering, University of Electronic Science and Technology of China;Chengdu University of Technology
Abstract:The Rao-Wilton-Glisson (RWG) basis functions and Linear-Linear (LL) basis functions are employed to solve the electromagnetic field integral equations of the arbitrary shaped perfect conductive objects with the method of moment. Several numerical examples are presented and compared. The results demonstrate that the LL basis functions can provide a better representation of the actual current distribution and result in the significant improvement in the accuracy and a faster convergence of the moment method solution of the magnetic field integral equations. This can be achieved with only minor modifications in the existing codes based on the RWG basis functions.
Keywords:electromagnetic field integral equation   method of moment   RWG basis functions   linear-linear (LL) basis functions
本文献已被 万方数据 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号