首页 | 本学科首页   官方微博 | 高级检索  
     

构造二元切触有理插值的一种方法
引用本文:程荣. 构造二元切触有理插值的一种方法[J]. 阜阳师范学院学报(自然科学版), 2009, 26(1): 28-30
作者姓名:程荣
作者单位:安徽理工大学,理学院,安徽,淮南,2320001
摘    要:通过引入有理基函数和插值算子,对二元切触有理插值的构造方法进行了研究,并且给出了相关插值公式.与以往从连分式入手来构造切触有理插值的方法相比,计算过程中每一步都是可行的,即它的算法可行性是无条件的,且计算量较小.此外,本文还对该方法作了进一步的延伸,引入参数,通过选择适当的参数,从而可以任意降低分母或分子的次数,这是其算法的另一大优点.最后用实例来说明它的有效性,该方法简单、直观,容易操作,具有一定的实际应用价值.

关 键 词:二元切触有理插值  有理基函数  插值算子  插值公式

A way of constructing bivariate osculatory rational interpolation
CHENG Rong. A way of constructing bivariate osculatory rational interpolation[J]. Journal of Fuyang Teachers College:Natural Science, 2009, 26(1): 28-30
Authors:CHENG Rong
Affiliation:CHENG Rong (School of Science, Anhui University of Science and Technology Huainan Anhui 2320001 ,China )
Abstract:To investigate the method of bivariate osculatory rational interpolation,the related interpolation formula is given by the introduction of rational basis function and interpolation operator in this paper.Compared with the existing metheds vast majority of which are related to continued fractions,the calculation that each step is feasible, that is,its feasibility algorithms are unconditionally [4,5,6 ] ,and the volume of the calculation is smaller.Moreover,the method also mades a further extension by introduction of parameters.If selecting the appropriate parameters,it can reduce the number of the denominator or molecular.This is another major advantage of the algorithm.Finally,to illustrate its effectiveness,the examples are given in this paper.The method is simple,intuitive and easy to operate which has a certain practical application value.
Keywords:bivariate osculatory rational interpolation  rational basis function  interpolation operator  interpolating formula
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号