首页 | 本学科首页   官方微博 | 高级检索  
     

基于样本扩展和线性子空间特征提取的单样本人脸识别
引用本文:孟一飞,袁雪,魏学业,秦飞舟,覃庆努. 基于样本扩展和线性子空间特征提取的单样本人脸识别[J]. 应用科学学报, 2013, 31(5): 488-494. DOI: 10.3969/j.issn.0255-8297.2013.05.008
作者姓名:孟一飞  袁雪  魏学业  秦飞舟  覃庆努
作者单位:1. 北京交通大学电子信息工程学院,北京1000442. 宁夏大学物理电气信息学院,银川750021
基金项目:国家自然科学基金(No. 61301186);高等学校博士学科点专项科研基金(No. 20110009120003);北京交通大学校基金(No.W11JB00460)资助
摘    要:针对单训练样本情况下的人脸识别问题,提出一种虚拟样本扩展方法. 利用光照模板映射将单一样本扩展为一组虚拟样本,从而增强单训练样本的分类信息. 采用主成分分析(principal component analysis, PCA)对扩展的虚拟样本进行降维,并用Fisher 鉴别变换作二次特征抽取,然后用最近邻分类器识别人脸图像. 所提方法在人脸图像库Yale B 和Extended Yale B 上进行试验,用PCA+LDA 方法把扩展图像作为训练集对测试图像进行特征提取和识别. 相对于以单样本图像为训练集的PCA 特征提取,该方法显著提高了识别率.

关 键 词:人脸识别  单人单样本  主成分分析  线性鉴别分析  
收稿时间:2012-05-23
修稿时间:2012-10-15

Single Sample Face Recognition with Virtual Samples and Linear Subspace Feature Extraction
MENG Yi-fei,YUAN Xue,WEI Xue-ye,QIN Fei-zhou,QIN Qing-nu. Single Sample Face Recognition with Virtual Samples and Linear Subspace Feature Extraction[J]. Journal of Applied Sciences, 2013, 31(5): 488-494. DOI: 10.3969/j.issn.0255-8297.2013.05.008
Authors:MENG Yi-fei  YUAN Xue  WEI Xue-ye  QIN Fei-zhou  QIN Qing-nu
Affiliation:1. School of Electronic and Information Engineering , Beijing Jiaotong University,;Beijing 100044, China;2. School of Physics Electrical Information Engineering, Ningxia University,;Yinchuan 750021, China
Abstract:A method of reference model illumination mapping is proposed to deal with the problem of one sample per person. To enhance the classification information of single training sample, we extend virtual images generated from the given single training image. Using discrete wavelet transform (DWT), the low-frequency band is processed to map the illumination information from the reference model to create a virtual sample. Principle-component-analysis plus linear-discriminant-analysis (PCA+LDA) is performed on the virtual training set to extract features. Experiments are performed on the Yale B and extended Yale B facial image database. The results show that, compared with the PCA feature extraction with single sample, recognition rate is significantly higher using the proposed method.
Keywords: face recognition  single sample per person  principal component analysis (PCA)   linear discriminant analysis ( LDA )  
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号