摘 要: | ![]() 考虑下面燃烧方程组的Cauchy问题:a,灭.一戈u.节qz j.,,Ut具r(“)一。,aX己石,z+冷中(“)公~0,口不(x,r)〔R xR*, (l) (“(x,o),:(x,0))~(,。(二), 20(二)),x〔R,(2)其中及,宁是正常数,f(“)是光滑函数,币(u)定义如下:律广义解的证明,在f非凸以及初值在有界可测函数类中得到(1)、(2)式广义解的存在性.本文主要结果是 定理设声〔Cl且没有区间使得f是线性的,初值是有界可测函数,则Cauoh}问题(l)、(2)式的广义解存在.价(u)一l,u>00,u蕊0. 上述模型由Maida[1]提出,滕振寰、应隆安〔2.3,对这类问题进行了系统研究,他们利用广义特征及差分格式…
|