首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
一种改进的特征选取方法
作者姓名:
苑俊英
陈海山
作者单位:
中山大学南方学院;中山大学信息科学与技术学院;
摘 要:
从人工分类的角度看,标题、摘要及关键词中的词条对于文本分类具有更重要的作用,在特征选取中低DF值的词条可能更能代表文本的类别信息。针对以上两个问题,本文提出了基于类别核心词的特征选取方法。首先,从标题、摘要及关键词中提取类别核心词;然后。通过加权方式,强化它们在特征选取中的作用;最后在朴素贝叶斯分类方法上进行实验。实验结果表明,提出的方法能够有效提高中文文本的分类准确率。
关 键 词:
特征选取
类别核心词
朴素贝叶斯
文本分类
本文献已被
CNKI
维普
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号