首页 | 本学科首页   官方微博 | 高级检索  
     

智能化辅助试井解释
引用本文:陈伟 段永刚 刘辉 谢军. 智能化辅助试井解释[J]. 西南石油大学学报(自然科学版), 1999, 21(2): 5-8. DOI: 10.3863/j.issn.1000-2634.1999.02.02
作者姓名:陈伟 段永刚 刘辉 谢军
作者单位:1.西南石油学院计科系,四川 南充 637001; 2.川中油气勘探开发公司
摘    要:综合集成的试井解释模型和解释模型的自动识别一直是试井解释研究的热点,文中提出了一种基于句法模式识别的试井模型识别新技术,它克服了现有技术在曲线形态识别与模型诊断推理方面的困难,将模型识别的复杂过程分为特征抽取、形态跟踪、模型推断等简单过程;利用试井分析和非线性最优化技术形成了一套集成多种解释模型的高效率解释软件。

关 键 词:人工智能  模式识别  试井解释  曲线拟合  
收稿时间:1998-10-30

ARTIFICIAL INTELLIGENCE TO ASSIST WELL TESTING INTERPRETATION
Chen Wei Duan Yong-gang Liu Hui Xie Jun. ARTIFICIAL INTELLIGENCE TO ASSIST WELL TESTING INTERPRETATION[J]. Journal of Southwest Petroleum University(Seience & Technology Edition), 1999, 21(2): 5-8. DOI: 10.3863/j.issn.1000-2634.1999.02.02
Authors:Chen Wei Duan Yong-gang Liu Hui Xie Jun
Affiliation:Southwest Petroleum Inst
Abstract:Comprehensively integrated well testing interpretation model and the automatic recognization of the model have being a hard point for the study on the area. In order to solve the problems of curve pattern recognization and model diagnosing inference, a new method of well testing model recognization is presented in the paper based on syntactic pattern recognization. The complicated process recognizing pattern is simplified into characteristic extraction, shape tracing and model inference. A set of highly effective interpretation software integrating interpretation models is developed by well testing analyses and nonlinear optimization technology.
Keywords:artificial intelligence  model recognization  well testing interpretation  curve match  
点击此处可从《西南石油大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西南石油大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号