首页 | 本学科首页   官方微博 | 高级检索  
     

Lagrange乘数法的几何直观推导
引用本文:刘三明,李修勇. Lagrange乘数法的几何直观推导[J]. 河南科技大学学报(自然科学版), 2004, 25(6): 82-84
作者姓名:刘三明  李修勇
作者单位:江苏科技大学,数理系,江苏,镇江,212003;河南科技大学,数理系,河南,洛阳,471003
基金项目:江苏省教育厅基金资助项目(JH02-048)
摘    要:从几何上,直观地介绍求解一类条件极值问题的Lagrange乘数法,显得很形象、易于理解。另外,用Lagrange乘数法求出的解不一定是条件极值问题的极小值解。利用二阶导数给出了用Lagrange乘数法求出的解是条件极值问题的极小值解的一个充分条件。用该条件判别,比用已有的方法判别简单易行。

关 键 词:多元函数  条件极值  Lagrange 乘数法
文章编号:1672-6871(2004)06-0082-03
修稿时间:2004-09-14

Lagrange Multiplier Method Introduced from View of Geometry
LIU San-Ming,LI Xiu-Yong. Lagrange Multiplier Method Introduced from View of Geometry[J]. Journal of Henan University of Science & Technology:Natural Science, 2004, 25(6): 82-84
Authors:LIU San-Ming  LI Xiu-Yong
Abstract:The Lagrange multiplier method is derived from the view of geometry. Furthermore, the solutions given by the Lagrange multiplier method are not necessarily minimal solutions about the conditional extremum problem. A sufficient condition of second order is given for that solutions given by the Lagrange multiplier method are minimal solutions of the conditional extremum problem. When this second order sufficient condition is used for a judgment method, it is more convenient than other judgment methods.
Keywords:Multivariate functions  Conditional extrema  Lagrange multiplier method.
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号