首页 | 本学科首页   官方微博 | 高级检索  
     

预训练模型下航天情报实体识别方法
引用本文:魏明飞1,2,潘冀3,陈志敏1,2,梅小华4,石会鹏3. 预训练模型下航天情报实体识别方法[J]. 华侨大学学报(自然科学版), 2021, 0(6): 831-837. DOI: 10.11830/ISSN.1000-5013.202103038
作者姓名:魏明飞1  2  潘冀3  陈志敏1  2  梅小华4  石会鹏3
作者单位:1. 中国科学院大学 计算机科学与技术学院, 北京 100049; 2. 国家空间科学中心, 北京 100190;3. 国家无线电监测中心, 北京 100037;4. 华侨大学 信息科学与工程学院, 福建 厦门 361021
摘    要:为了快速处理航天情报,基于数据驱动的深度学习技术,提出融合多源异构知识标注中文航天情报数据集的方法流程,以及基于预训练(pre-training)模型的航天情报实体识别(AIER)方法;通过对航天情报进行命名实体识别,达到对航天情报进行信息抽取的目的.通过融合BERT(bidirectional encoder representation from transformers)预训练模型和条件随机场(CRF)模型构建AIER模型(BERT-CRF模型),将其与隐马尔可夫模型(HMM)、条件随机场(CRF)模型、双向长短期记忆网络加条件随机场(BiLSTM-CRF)模型进行实体识别对比实验.结果表明:基于预训练模型的AIER模型能够取得93.68%的准确率、97.56%的召回率和95.58%的F1值;相比于其他方法,基于预训练模型方法的性能得到提高.

关 键 词:航天情报处理  预训练  信息抽取  命名实体识别  信息科学

Aerospace Intelligence Entity Recognition Method Based on Pre-Training Model
WEI Mingfei,' target=_blank rel=external>,PAN Ji,CHEN Zhimin,' target=_blank rel=external>,MEi Xiaohua,SHI Huipeng. Aerospace Intelligence Entity Recognition Method Based on Pre-Training Model[J]. Journal of Huaqiao University(Natural Science), 2021, 0(6): 831-837. DOI: 10.11830/ISSN.1000-5013.202103038
Authors:WEI Mingfei  ' target=_blank rel=external>  PAN Ji  CHEN Zhimin  ' target=_blank rel=external>  MEi Xiaohua  SHI Huipeng
Affiliation:1. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 2. National Space Science Center, Beijing 100190, China; 3. State Radio Monitoring Center, Beijing 100037, China; 4. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract:In order to quickly process aerospace intelligence, based on a data-driven deeplearning technology, a method of fusing multi-source heterogeneous knowledge to label Chinese aerospace intelligence data sets is proposed, and the aerospace intelligence entity recognition(AIER)method based on pre-training models is formed. Through the identification of named entities for aerospace intelligence, the purpose of information extraction for aerospace intelligence is achieved. This paper aims to construct the AIER model(BERT-CRF model)by fusing the bidirectional encoder representations from transformers(BERT)pre-training model and the conditional random field(CRF)model, and combine it with the hidden Markov model(HMM)and CRF model, bidirectional long short-term memory network plus conditional random field(BiLSTM-CRF model)model for entity recognition contrast experiments. The results show that the AIER model based on the pre-training model can achieve 93.68% accuracy, 97.56% recall rate and 95.58% F1 value; compared with other methods, the pre-training model method is much improved on performance.
Keywords:aerospace intelligence processing  pre-training  information extraction  named entity recognition  information science
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号