首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析的BP神经网络对房价的预测研究
引用本文:邱启荣,于婷. 基于主成分分析的BP神经网络对房价的预测研究[J]. 湖南文理学院学报(自然科学版), 2011, 0(3): 24-26,36
作者姓名:邱启荣  于婷
作者单位:华北电力大学数理学院;
摘    要:为了提高房价预测精度,采用基于主成分分析的BP神经网络预测模型.首先运用主成分分析对影响房价指标重新组合生成新的综合指标,然后采用非线性预测能力非常强的BP神经网络对其进行建模,并对房价进行预测.仿真结果表明,基于主成分分析的BP神经网络的房价仿真值与历史值的系统总误差只有0.52%,可作为房价预测的一种行之有效的方法.

关 键 词:BP神经网络  主成分分析  房价  预测

BP neural network forecast model based on principal component analysis for the real estate price of prediction
QIU Qi-rong,YU Ting. BP neural network forecast model based on principal component analysis for the real estate price of prediction[J]. Journal of Hunan University of Arts and Science:Natural Science Edition, 2011, 0(3): 24-26,36
Authors:QIU Qi-rong  YU Ting
Affiliation:QIU Qi-rong,YU Ting (College of Mathematics and Physics,North China Electric Power University,Beijing 102206,China)
Abstract:The BP neural network forecast model based on principal component analysis is used to improve the prediction accuracy.Factors affecting real estate prices is combined by principal component analysis,then it comes out some new fewer indicators.After that,BP neural network model is built which can well do non-linear prediction.Finally,the real estate price can be calculated.The total error between the simulation value through BP neural network based on principal component analysis and the real house price is ...
Keywords:BP neural network  principal component analysis  the real estate  prediction  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号