首页 | 本学科首页   官方微博 | 高级检索  
     

基于独立源分析的过程监测及故障诊断方法
引用本文:杨英华,吴英华,陈晓波,秦树凯. 基于独立源分析的过程监测及故障诊断方法[J]. 系统仿真学报, 2006, 18(11): 3220-3223
作者姓名:杨英华  吴英华  陈晓波  秦树凯
作者单位:东北大学信息科学与工程学院,沈阳,110004
摘    要:
多元统计过程控制(MSPC)要求观测数据服从正态分布,而实际的工业过程数据大都不满足正态分布条件。独立源分析(ICA)是近几年才发展起来的一种新的统计方法,可以克服对数据分布的依赖。为此以ICA算法为核心,引入一种新型的过程监测及故障诊断方法。应用ICA提取独立源,利用I2图,Ie2图和SPE图进行故障检测,将变量重构图用于诊断故障。以三水箱系统为背景进行的实验研究,验证了该方法的有效性。

关 键 词:独立源分析(ICA)  过程监测  故障检测  故障诊断
文章编号:1004-731X(2006)11-3220-04
收稿时间:2005-08-17
修稿时间:2005-11-03

Process Monitoring and Fault Diagnosis Based on Independent Component Analysis Method
YANG Ying-hua,WU Ying-hua,CHEN Xiao-bo,QIN Shu-kai. Process Monitoring and Fault Diagnosis Based on Independent Component Analysis Method[J]. Journal of System Simulation, 2006, 18(11): 3220-3223
Authors:YANG Ying-hua  WU Ying-hua  CHEN Xiao-bo  QIN Shu-kai
Affiliation:School of Information Science and Engineering, NEU, Shengyang 110004, China
Abstract:
Multivariate statistical process control (MSPC) is based upon the assumption that the observed data must be subject to normal probability distribution, which sometimes can not be satisfied. Independent component analysis (ICA) is a recently developed method, which can overcome the need of the data distribution. A new method was introduced for process monitoring and fault diagnosis based on ICA. ICA was used to extract the independent components, and I2, Ie2and SPE charts were used for fault detection, and Variables contribution plots were considered for fault diagnosis. At last, the simulation results of three-tank system reveal this method is very effective.
Keywords:independent component analysis (ICA)  process monitoring  fault detection  fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号