摘 要: | 为对网络舆情数据进行主题挖掘与情感分析,以微博某单位招聘热点事件的舆情演变为研究对象,提出了一种融合主题模型和情感分析的LDA-Attention-BiLSTM模型。运用Python的Scrapy框架爬取该事件文本评论。采用隐含狄利克雷分布(LDA)模型实现了主题识别。使用基于注意力(Attention)机制的双向长短期记忆(BiLSTM)网络进行文本情感分析。研究结果表明,构建的基于LDA与Attention机制BiLSTM的混合模型能够反映舆情中的热点话题与情感时序变化,揭示事件爆发的主要原因,事件传播阶段的主要话题与事件的处理结果等。
|