首页 | 本学科首页   官方微博 | 高级检索  
     

模糊神经Petri网算法优化及其收敛性分析
引用本文:李孝忠,周艳军. 模糊神经Petri网算法优化及其收敛性分析[J]. 天津科技大学学报, 2014, 0(3): 68-72
作者姓名:李孝忠  周艳军
作者单位:天津科技大学计算机科学与信息工程学院,天津300222
基金项目:国家自然科学基金资助项目(61070021,11301382)
摘    要:针对模糊神经Petri网(fuzzy neural Petri net,FNPN)学习算法计算精度低、收敛性差及训练过程中网络震荡较大的问题,提出一种优化的FNPN算法.本算法采用两种S型连续函数分别表示变迁使能及变迁点燃后的新标记值,并在传统参数修正公式的基础上考虑修正前的数值进而增加新型的动量项,从而改善网络的收敛性.本文证明了优化后的参数修正算法可以保证FNPN网络的收敛性.

关 键 词:Petri网  模糊Petri网  模糊神经Petri网  BP算法  收敛性

Optimization of Fuzzy Neural Petri Net Algorithm and Convergence Analysis
LI Xiaozhong,ZHOU Yanjun. Optimization of Fuzzy Neural Petri Net Algorithm and Convergence Analysis[J]. Journal of Tianjin University of Science & Technology, 2014, 0(3): 68-72
Authors:LI Xiaozhong  ZHOU Yanjun
Affiliation:(College of Computer Science and Information Engineering, Tianjin University of Science & Technology, Tianjin 300222, China)
Abstract:Aimed at the poor computational accuracy and convergence as well as too violent network concussion during the training of fuzzy neural Petri net (FNPN) learning algorithm, an optimized algorithm was proposed. Two S-type continuous functions were used to express transition enablement and the new tag values after transition firing. In addition, the value before correction was considered, and then the new momentum was added based on the traditional parameter correction formula, which can ensure the convergence of the proposed optimization algorithm. It was proved that the optimized parameter correction algorithm can ensure the convergence of the FNPN network.
Keywords:Petri net  fuzzy Petri net  fuzzy neural Petri net  BP algorithm  convergence
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号