首页 | 本学科首页   官方微博 | 高级检索  
     

基于双向长短期记忆神经网络的岩相预测方法
引用本文:熊玄辰,曹俊兴,周鹏,许汉卿,程明. 基于双向长短期记忆神经网络的岩相预测方法[J]. 成都理工大学学报(自然科学版), 2021, 48(2): 226-234. DOI: 10.3969/j.issn.1671-9727.2021.02.10
作者姓名:熊玄辰  曹俊兴  周鹏  许汉卿  程明
作者单位:油气藏地质及开发工程国家重点实验室,地球勘探与信息技术教育部重点实验室(成都理工大学),成都 610059
基金项目:国家自然科学基金重点项目;国家自然科学基金项目
摘    要:
介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测.通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度和伽马拟声波阻抗作为输入,以岩相作为标签,通过Bi-L...

关 键 词:深度学习  循环神经网络  双向长短期记忆神经网络  岩相预测

Lithofacies prediction method based on bidirectional long short memory neural network
XIONG Xuanchen,CAO Junxing,ZHOU Peng,XU Hanqing,Cheng Ming. Lithofacies prediction method based on bidirectional long short memory neural network[J]. Journal of Chengdu University of Technology: Sci & Technol Ed, 2021, 48(2): 226-234. DOI: 10.3969/j.issn.1671-9727.2021.02.10
Authors:XIONG Xuanchen  CAO Junxing  ZHOU Peng  XU Hanqing  Cheng Ming
Affiliation:(State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Key Laboratory of Earth Exploration and Information Technology of China Ministry of Education, Chengdu University of Technology, Chengdu 610059, China)
Abstract:
A Bi-directional Long Short-Term Memory(BI-LSTM)based neural network method for lithofacies prediction is introduced,which combines logging and seismic data to achieve efficient and accurate lithofacies prediction.Time-depth matching of well seismic data is carried out through synthesis of seismic records.In the method,seismic absorption attenuation data,compressional wave impedance,density and gamma pseudo-acoustic impedance are taken as input,and lithofacies is taken as label.The nonlinear mapping relationship between the input data and lithofacies is established through BI-LSTM model training.The method was applied to lithofacies prediction in shallow channel sand body exploration in Sichuan area,and the results show that the method based on BI-LSTM is better than ordinary cyclic neural network and ordinary LSTM,and it can quickly determine the underground lithofacies and effectively indicate the channel.Bi-LSTM based lithofacies prediction method can effectively extract the nonlinear mapping relationship between input data and lithofacies information,which has a high practical value for lithofacies prediction in areas with few drilled wells.
Keywords:deep learning  recurrent neural network  bidirectional long short term memory neural network  lithofacies prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号