首页 | 本学科首页   官方微博 | 高级检索  
     

利普希茨空间到有界解析函数空间的加权微分复合算子
引用本文:张亮. 利普希茨空间到有界解析函数空间的加权微分复合算子[J]. 菏泽学院学报, 2011, 33(5)
作者姓名:张亮
作者单位:天津大学理学院,天津,300072
基金项目:国家自然科学基金资助项目(10971153),国家自然科学基金资助项目(10671141)
摘    要:
加权微分复合算子理论是算子领域的重要组成部分.不同空间的加权微分复合算子的有界性和紧致性被深入地研究并出现了许多成果.在此基础上给出了单位圆盘上从利普希茨空间到有界解析函数空间的加权微分复合算子有界和紧致的性质,并证明了算子有界和紧致的充要条件.

关 键 词:利普希茨空间  有界解析函数空间  加权微分复合算子  

Weighted Differentiation Composition Operators from Lipschitz Space to Bounded Analytic Function Space
ZHANG Liang. Weighted Differentiation Composition Operators from Lipschitz Space to Bounded Analytic Function Space[J]. , 2011, 33(5)
Authors:ZHANG Liang
Affiliation:ZHANG Liang(Institute of Sciences,Tianjin University,Tianjin 300072,China)
Abstract:
Abstrac: Theories of weighted differentiation composition operators are important component parts in operator fields.Boundedness and compactness of the weighted differentiation composition operators between different spaces have been widely studied and a number of results have been given.On this basis,the necessary and sufficient conditions of the boundedness and compactness of the weighted differentiation composition operator from the Lipschitz spaces to bounded analytic function spaces in the unit disk ar...
Keywords:Lipschitz spaces  bounded analytic function spaces  weighted differentiation composition operators  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号