首页 | 本学科首页   官方微博 | 高级检索  
     

核独立分量分析在盲源信号分离中的应用研究
引用本文:王翔. 核独立分量分析在盲源信号分离中的应用研究[J]. 南京工程学院学报(自然科学版), 2011, 9(2): 6-10
作者姓名:王翔
作者单位:南京工程学院能源与动力工程学院,江苏南京,211167
摘    要:提出利用核独立分量分析来分离混合语音信号的盲信号处理方法.介绍了基于核空间ICA的原理和基本算法,然后利用核独立分量分析算法和固定点快速分离算法分离了混合语音信号.试验结果表明:利用基于核独立分量分析的方法可以得到较为理想的分离效果.

关 键 词:独立分量分析  核空间  声音信号  语音分离

Research into the Application of Kernel Independent Component Analysis in Blind Sound Signal Separation
WANG Xiang. Research into the Application of Kernel Independent Component Analysis in Blind Sound Signal Separation[J]. Journal of Nanjing Institute of Technology :Natural Science Edition, 2011, 9(2): 6-10
Authors:WANG Xiang
Affiliation:WANG Xiang (School of Energy and Power Engineering,Nanjing Institute of Technology,Nanjing 211167,China)
Abstract:This paper proposes a method to separate mixed speech signals and to address blind sound signals using kernel independent component analysis. What is introduced then is the principle and basic algorithm of kernel independent component analysis. Mixed speech signals are separated using kernel independent component analysis algorithm and fast fixed-point separation algorithm. The experimental results indicate that the separation using kernel independent component analysis is desirable.
Keywords:independent component analysis  kernel space  sound signal  speech separation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号