首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法和模拟退火算法优化神经网络的铁路营业里程预测
引用本文:侯福均,吴祈宗. 基于遗传算法和模拟退火算法优化神经网络的铁路营业里程预测[J]. 北京理工大学学报, 2004, 24(3): 247-250
作者姓名:侯福均  吴祈宗
作者单位:北京理工大学,管理与经济学院,北京,100081;北京理工大学,管理与经济学院,北京,100081
摘    要:提出应用遗传算法(GA)和模拟退火(SA)优化神经网络预测铁路营业里程.采用3层前馈神经网络实现铁路营业里程的时间序列预测,输入节点数为5,隐层节点数为8,输出节点数为1.对神经网络的连接权重和节点阈值的确定,采用GA和SA算法相结合的混合优化学习策略.两种算法结合时,SA算法处于外层,GA处于内层.GA采用实数编码,把要确定的神经网络节点连接权重和节点阈值作为基因串.数值计算结果表明混合优化的神经网络的学习速度和精度都比单纯BP算法得出的结果好.因此,用GA-SA混合优化的神经网络预测铁路营业里程是可行的.

关 键 词:BP神经网络  遗传算法(GA)  模拟退火(SA)算法  铁路营业里程  时间序列预测
文章编号:1001-0645(2004)03-0247-04
收稿时间:2003-04-11
修稿时间:2003-04-11

Prediction of Length Sequence of Railways in Operation Based on Genetic Algorithm and Simulated Annealing Algorithm Optimized Neural Networks
HOU Fu-jun and WU Qi-zong. Prediction of Length Sequence of Railways in Operation Based on Genetic Algorithm and Simulated Annealing Algorithm Optimized Neural Networks[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2004, 24(3): 247-250
Authors:HOU Fu-jun and WU Qi-zong
Affiliation:School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China;School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
Abstract:A method is proposed for the prediction of length sequence of railways in operation based on genetic algorithm(GA) and simulated annealing(SA) optimized neural networks. A three-layer feedforward neural network (5 input neurons, 8 hidden neurons, 1 output neuron) is applied to the length sequence prediction of railways in operation. To obtain optimal weights, GA and SA algorithms are integrated to train the neural network. To combine these two algorithms, GA is put into each step of the SA algorithm. The weights that are all real numbers are coded as chromosomes of the GA. Compared with that of BP neural network the numerical results show that this model has the advantages of high prediction accuracy and high operational speed, indicating that the method is feasible.
Keywords:BP neural network  genetic algorithm(GA)  simulated annealing(SA) algorithm  length of railways in operation  sequence prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号