首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊协方差的自适应聚类神经网络
引用本文:王连亮,陈怀新. 基于模糊协方差的自适应聚类神经网络[J]. 四川大学学报(自然科学版), 2005, 42(3): 488-492
作者姓名:王连亮  陈怀新
作者单位:四川大学电子信息学院,成都,610064;四川大学电子信息学院,成都,610064;中国西南电子技术研究所,成都,610036
摘    要:将模糊协方差距离测度引入到竞争学习型神经网络的参数控制中,采用批处理的网络学习方式消除数据样本顺序对网络权重调整的影响,通过淘汰及合并数据集的冗余类实现对未知类别数、多种分布型数据的自适应聚类.实验表明,新网络对数据集的分布形式有较强的鲁棒性,并能正确确定数据集的类别数.

关 键 词:神经网络  自适应聚类  竞争学习  模糊协方差  相似度
文章编号:0490-6756(2005)03-0488-05

Adaptive Clustering Neural Network Based on Fuzzy Covariance Matrix
WANG Lian-liang,CHEN Huai-xin. Adaptive Clustering Neural Network Based on Fuzzy Covariance Matrix[J]. Journal of Sichuan University (Natural Science Edition), 2005, 42(3): 488-492
Authors:WANG Lian-liang  CHEN Huai-xin
Affiliation:WANG Lian-liang~1,CHEN Huai-xin~
Abstract:Fuzzy covariance matrix is introduced into the parameters controlling of competitive learning neural network. Batch processing network-learning mode is adopted to eliminate the influence of input data order on network-weight learning. Adaptive clustering for the data sets with unknown number of clusters and varied distribution is realized during rejecting and merging redundant clusters. The experiments show that the new network has strong robustness to the distribution of data sets and can obtain the number of clusters in the data correctly.
Keywords:neural network  adaptive clustering  competitive learning  fuzzy covariance  similarity
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号