首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于改进径向基神经网络的人脸图像识别方法
引用本文:王阳萍,朱正平,孙传庆. 一种基于改进径向基神经网络的人脸图像识别方法[J]. 甘肃科学学报, 2006, 18(2): 62-65
作者姓名:王阳萍  朱正平  孙传庆
作者单位:1. 兰州交通大学,信息与电气工程学院,甘肃,兰州,730070
2. 兰州城市学院,计算机系,甘肃,兰州,730070
摘    要:常用于径向基神经网络中心参数学习的K-均值聚类算法,易受初始参数选取的影响而收敛于局部极小值.将自动终止聚类判据的减聚类算法用于径向基网络的学习,可根据样本集确定径向基函数数目,且其计算量与数据点的数目与考虑问题的维数无关,很适合于人脸这种维数较高的模式.实验证明,应用这种算法训练径向基神经网络识别人脸,从识别精度到识别速度上都优于传统算法.

关 键 词:减聚类算法  径向基神经网络  人脸识别
文章编号:1004-0366(2006)02-0062-04
收稿时间:2005-02-16
修稿时间:2005-02-16

Face Recognition Method Based on Improved Radial Basis Function Neural Networks
WANG Yang-ping,ZHU Zheng-ping,SUN Chuan-qing. Face Recognition Method Based on Improved Radial Basis Function Neural Networks[J]. Journal of Gansu Sciences, 2006, 18(2): 62-65
Authors:WANG Yang-ping  ZHU Zheng-ping  SUN Chuan-qing
Affiliation:1. School of Information and Electrical Engineering, Lanzhou Jiaoton University, Lanzhou 730070, China; 2. Dept of Computer, Lanzhou City College, Lanzhou 730070, China
Abstract:Influenced by initial selected value,K-means clustering algorithm applied to training the center parameters of radial basis function(RBF) neural networks tends to converge to a local minimum.The subtractive clustering algorithm can automatically terminate the clustering criterion to ascertain RBF numbers.By using the algorithm to train RBF networks,the number of data points and their calculation are irrelevant to the dimension of the information considered.For a high-dimensional face pattern,the algorithm can effectively pick up training speed.The results show that RBF neural networks classifier with the proposed algorithm is more effective in speed and accuracy than that with the traditional algorithm.
Keywords:subtractive clustering algorithm   radial basis function neural networks   face recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号