首页 | 本学科首页   官方微博 | 高级检索  
     

广义邻域粗集下的集成特征选择及其选择性集成算法
引用本文:马超,陈西宏,徐宇亮,王光明. 广义邻域粗集下的集成特征选择及其选择性集成算法[J]. 西安交通大学学报, 2011, 45(6): 34-39
作者姓名:马超  陈西宏  徐宇亮  王光明
作者单位:空军工程大学导弹学院,713800,陕西三原
摘    要:针对实际模式识别系统中样本特征常具有的连续值属性、高维性、强相关性和冗余性等影响分类效果的问题,在广义邻域粗集模型下提出一种集成特征选择及其选择性集成算法.该算法先提取样本特征并利用所提出的马氏距离分布熵评估其重要度,再基于特征重要度构建广义邻域粗集模型,并在此模型上以特征重要度为启发式信息设计基于蚁群算法的属性约简算法,然后通过改变广义邻域粗集模型参数的方式获得更多具有更大差异性的基分类器,最后利用主成分分析法对产生的基分类器进行选择性集成.模拟电路故障诊断结果表明,该算法比AdaBoost等算法取得的分类精度至少提高了2.6%.

关 键 词:集成特征选择  广义邻域粗集  马氏距离分布熵  选择性集成  模拟电路故障诊断

Ensemble Feature Selection Based on Generalized Neighborhood Rough Model and Its Selective Integration
MA Chao,CHEN Xihong,XU Yuliang,WANG Guangming. Ensemble Feature Selection Based on Generalized Neighborhood Rough Model and Its Selective Integration[J]. Journal of Xi'an Jiaotong University, 2011, 45(6): 34-39
Authors:MA Chao  CHEN Xihong  XU Yuliang  WANG Guangming
Affiliation:MA Chao,CHEN Xihong,XU Yuliang,WANG Guangming(Missile Institute,Air Force Engineering University,Sanyuan,Shaanxi 713800,China)
Abstract:A new ensemble feature selection method under the model of generalized neighborhood rough set is presented to improve the classification accuracy in actual pattern recognition systems.The importance degrees of sample features are evaluated by the distribution entropy of Mahalanobis distance(DEMD),and the generalized neighborhood rough model is constructed based on resulting degrees.Then a fast attribute reduction algorithm that takes features importance degrees as heuristic information is designed to produc...
Keywords:ensemble feature selection  generalized neighborhood roughset  distribution entropy of Mahalanobis distance  selective integration  analog circuit fault diagnosis  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号