首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换与低秩校正的Toeplitz系统快速算法
引用本文:王德华. 基于小波变换与低秩校正的Toeplitz系统快速算法[J]. 湖南大学学报(自然科学版), 2007, 34(3): 89-92
作者姓名:王德华
作者单位:湖南大学,数学与计量经济学院,湖南,长沙,410082
基金项目:国家自然科学基金(60573027)
摘    要:讨论了Toeplitz方程组的快速求解方法.首先研究了Toeplitz矩阵在多进制小波变换下的代数结构.利用数值实验得到,对多项式偶函数生成的Toeplitz系统实施双正交9~7小波后矩阵在一定的精度下具有有限的带宽特性.结合低秩校正方法,得到一类Toeplitz系统的快速求解方法,运算量级为O(N),其中N为系统的阶.该方法与通常使用的直接快速算法以及预条件共轭梯度法(PCG)分别需要的复杂度O(N~2)以及O(Nlog_2N)相比,运算量有较大幅度的减少.

关 键 词:小波变换  秩校正  Toeplitz系统
文章编号:1000-2472(2007)03-0089-04
修稿时间:2006-02-26

Fast Algorithm for Toeplitz Systems Based on Wavelet Transform and Low Rank Update
WANG De-hua. Fast Algorithm for Toeplitz Systems Based on Wavelet Transform and Low Rank Update[J]. Journal of Hunan University(Naturnal Science), 2007, 34(3): 89-92
Authors:WANG De-hua
Affiliation:College of Mathematics and Econometrics, Hunan Univ,Changsha,Hunan 410082,China
Abstract:The fast algorithm for Toeplitz systems was studied.We first obtained the algebraic structure when M band wavelet transform was performed to Toeplitz matrix.By using numerical experiment under a pre- cision,we showed that the matrix after wavelet transform was performed was featured by bandwidth for the generation function being polynomial.By using wavelet and low rank update approach,a fast algorithm for Toepliz system was proposed.The computational complexity was O(N),where N was the order.Compared with the complexity O(N~2)and O(N log_2N)required in commonly used direct fast method and PCG method, the computational cost of the proposed algorithm was greatly reduced.
Keywords:wavelet transform  rank update  Toeplitz system
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《湖南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号