首页 | 本学科首页   官方微博 | 高级检索  
     

基于关联规则算法的换流站SER事件集挖掘方法
引用本文:黄剑湘,林铮,骆钊,禹晋云,杨涛,徐峰. 基于关联规则算法的换流站SER事件集挖掘方法[J]. 科学技术与工程, 2022, 22(8): 3152-3159
作者姓名:黄剑湘  林铮  骆钊  禹晋云  杨涛  徐峰
作者单位:中国南方电网有限责任公司超高压输电公司昆明局, 昆明650217;昆明理工大学电力工程学院, 昆明650500
基金项目:国家自然科学基金资助项目(51907084);中国南方电网有限责任公司超高压输电公司核心攻关科技项目(CGYKJXM20180212);云南省应用基础研究计划资助项目((202101AT070080))
摘    要:为提高运维人员面对换流站生成的海量事件顺序记录(sequence events recorder, SER)数据的分析能力,提出一种基于关联规则算法的换流站SER事件组挖掘方法。首先利用原始SER事件特征筛选,建立换流站SER事件多维模型;进而利用关联规则算法FP-Growth算法进行数据挖掘与分析,得到换流站典型事件的SER支持组与置信事件;最后基于SER支持组与置信事件分析SER事件集可靠性,方便换流站运维人员及时发现换流站的设备异常动作,减少人工盘查SER造成的事件漏看、错看的可能性。通过挖掘昆柳龙直流(direct current, DC)换流站调试期间SER事件集,表明所提出的方法可以有效地挖掘SER事件集的关联性,为运维人员及时发现SER事件缺失起参考作用。

关 键 词:事件顺序记录(SER)  FP-Growth算法  换流站典型事件  昆柳龙直流(DC)换流站
收稿时间:2021-06-05
修稿时间:2021-12-09

Association Mining Method for SER Event Sets in Converter Stations Based on Association Rule Algorithm
Huang Jianxiang,Lin Zheng,Luo Zhao,Yu Jinyun,Yang Tao,Xu Feng. Association Mining Method for SER Event Sets in Converter Stations Based on Association Rule Algorithm[J]. Science Technology and Engineering, 2022, 22(8): 3152-3159
Authors:Huang Jianxiang  Lin Zheng  Luo Zhao  Yu Jinyun  Yang Tao  Xu Feng
Affiliation:Kunming Bureau of CSG EHV Transmission Company
Abstract:In order to improve the analysis capability of research and judgment personnel facing the huge amount of sequence events recorder (SER) data generated by the converter stations, an association mining method for SER event sets in converter stations based on association rule algorithm is proposed in this paper. Firstly, the original SER event features are used to filter and build a multidimensional model of the SER events at the converter station. Then, the association rule algorithm FP-Growth algorithm is used for data mining and analysis to get the SER support group and confidence events of typical events in the converter station. Finally, the reliability of SER event set is analyzed based on SER support groups and confidence events, which facilitates the timely detection of abnormal equipment actions in the converter station by the converter station operation and maintenance personnel, and reduces the possibility of missing and misreading events caused by manual inventory of SER. By mining the SER event set during the commissioning of Kun-liu-long DC converter station, the proposed method is shown to be effective in mining the correlation of the SER event set, which serves as a reference for the research and judgment personnel to detect the missing SER events in a timely manner.
Keywords:Sequence events recorder (SER)   FP-Growth algorithm   Typical events in the converter station   Kun-Liu-Long DC converter station
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号