首页 | 本学科首页   官方微博 | 高级检索  
     

U群生成元算符在与U(n_1+n_2)??U(n_1)??U(n_2)匹配的非正则基下的矩阵元计算
引用本文:林海伦. U群生成元算符在与U(n_1+n_2)??U(n_1)??U(n_2)匹配的非正则基下的矩阵元计算[J]. 华东师范大学学报(自然科学版), 1990, 0(2)
作者姓名:林海伦
作者单位:华北师范大学化学系
摘    要:本文提出一种新的计算U群子约化系数的简便图解法.该方法和作者不久前提出的计算U群生成元算符的矩阵元的Weyl图解法结合起来可用于多电子体系壳层模型问题时出现的非正则基的矩阵元计算.

关 键 词:Weyl基表图解法  子约化分数  非正则基

The Evaluation of the U(n) Generator Matrix Elements in the Basis Adapted to
LIN HAILUN. The Evaluation of the U(n) Generator Matrix Elements in the Basis Adapted to[J]. Journal of East China Normal University(Natural Science), 1990, 0(2)
Authors:LIN HAILUN
Affiliation:Department of Chemistry
Abstract:A new simple graphical method of the unitary group subduction coefficients has been considered.In combination with the Weyl graphical method of the U(n)generator matrix elements, which we recently presented, the evaluation of the U(n)generator matrix elements in the non-canonical basis symmetry adapted to the Subgroup chain U(n=n_1+n_2)??U(n_2)??U(n_2)can be determinated, which appears in the shell-model approach in atomic and molecular systems.
Keywords:Weyl graphical method subduction coefficients non-canonical basis
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号