首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊系统聚类学习的自适应控制算法
引用本文:张勇,董吉文,陈月辉,李聪. 基于模糊系统聚类学习的自适应控制算法[J]. 济南大学学报(自然科学版), 2004, 18(3): 252-254
作者姓名:张勇  董吉文  陈月辉  李聪
作者单位:济南大学,信息科学与工程学院,山东,济南,250022;济南大学,信息科学与工程学院,山东,济南,250022;济南大学,信息科学与工程学院,山东,济南,250022;济南大学,信息科学与工程学院,山东,济南,250022
摘    要:在自适应控制最小方差自校正控制器设计中,当被控对象的数学模型未知时,可采用模糊系统代替实际系统。提出了一种新的模糊系统的聚类学习算法,根据初始聚类中心的选取原则,可以使最终获得的聚类结果是全局近优解。该方法只需计算一遍样本间的广义距离,即可完成初步的聚类,通过迭代运算可以使聚类结果得到进一步优化。仿真结果证明了自适应控制器的控制效果。

关 键 词:模糊系统  聚类学习算法  自适应控制
文章编号:1671-3559(2004)03-0252-03
修稿时间:2003-09-13

Adaptive Control Algorithm Based on Fuzzy System Clustering
ZHANG Yong,DONG Ji-wen,CHEN Yue-hui,LI Cong. Adaptive Control Algorithm Based on Fuzzy System Clustering[J]. Journal of Jinan University(Science & Technology), 2004, 18(3): 252-254
Authors:ZHANG Yong  DONG Ji-wen  CHEN Yue-hui  LI Cong
Abstract:For minimal square error self-emendation controller design in adaptive control,the plant math model is unsure.This paper discusses the method of the replacing real system model with a fuzzy system.A new clustering algorithm for fuzzy system was proposed;we can obtain a clustering result that is near to the global optimal solution base on the selection rule of the original cluster center.A primary solution that is near to the global optimal solution can be completed only calculating the distant between the data for one time; we can further optimize the solution if we use the iterative algorithm. The emulated result of adaptive controller proves the control effect
Keywords:fuzzy system  clustering algorithm  adaptive control
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号