首页 | 本学科首页   官方微博 | 高级检索  
     

非线性优化问题的光滑化序列二次规划方法
引用本文:宇振盛,张丽娜,秦毅. 非线性优化问题的光滑化序列二次规划方法[J]. 上海理工大学学报, 2015, 37(4): 317-321
作者姓名:宇振盛  张丽娜  秦毅
作者单位:上海理工大学 理学院, 上海 200093;上海理工大学 理学院, 上海 200093;上海理工大学 理学院, 上海 200093
基金项目:国家自然科学基金资助项目(11171221);上海市教委科研创新资助项目(14YZ094);上理工大学国家级项目培育项目(12XGM03)
摘    要:
为了获得序列二次规划方法的全局收敛性,通常需要借助一个罚函数,但常用的罚函数由于具有不可微性从而给计算带来一定的困难,拉格朗日函数虽然可以克服此困难,但其形式较为复杂,为解决该问题,给出了一类光滑化罚函数.基于一类双曲余弦型光滑化罚函数,提出了等式约束优化问题的一个光滑化序列二次规划方法.该光滑化函数具有良好的连续、可微性和凸性质,在适当条件下,获得了算法的全局收敛性,并给出数值测试说明了算法的有效性.

关 键 词:等式约束优化  光滑化函数  序列二次规划方法  全局收敛性
收稿时间:2014-05-17

Smoothing Sequence Quadratic Programming Method for Nonlinear Optimization
YU Zhensheng,ZHANG Lina and QIN Yi. Smoothing Sequence Quadratic Programming Method for Nonlinear Optimization[J]. Journal of University of Shanghai For Science and Technology, 2015, 37(4): 317-321
Authors:YU Zhensheng  ZHANG Lina  QIN Yi
Affiliation:College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China;College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China;College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:
To obtain the global convergence in the sequence quadratic programming(SQP) method, one often uses a penalty function.Due to its non-differentiability, the general penalty function will cause some numerical difficulty.The Lagrange function can overcome this difficulty, but it is complex in form.In the paper, a kind of smoothing penalty functions was developed and a sequence quadratic programming algorithm for equality constrained optimization problems was proposed.The smoothing function is based on the cosh function and it is continous, diffientiable and convex.The global convergence was achieved under certain conditions.The numerical tests were also given to show the effectiveness of the proposed algorithm.
Keywords:equality constrained optimization  smoothing penalty function  sequence quadratic programming method  global convergence
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《上海理工大学学报》浏览原始摘要信息
点击此处可从《上海理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号