首页 | 本学科首页   官方微博 | 高级检索  
     

基于鲁棒LS-SVM的ARMA时序模型研究
引用本文:王华秋,廖晓峰,曹长修,李梁. 基于鲁棒LS-SVM的ARMA时序模型研究[J]. 系统仿真学报, 2007, 19(8): 1780-1784
作者姓名:王华秋  廖晓峰  曹长修  李梁
作者单位:1. 重庆大学计算机学院,重庆,400044;重庆工学院计算机学院,重庆,400050
2. 重庆大学计算机学院,重庆,400044
3. 重庆大学自动化学院,重庆,400044
4. 重庆工学院计算机学院,重庆,400050
基金项目:重庆市教委资助项目;重庆市科学技术委员会自然科学基金计划;湖南省重点实验室基金
摘    要:对时序数据建模与辨识技术进行了分析,提出了使用鲁棒LS-SVM算法建立ARMA时序预测模型。该模型是在LS-SVM的约束条件中加入鲁棒特性和时序模型参数,使之在求解的过程中对孤立点与噪声不敏感,并且能准确地辨识时序模型参数。考虑到高炉的热状态的输入输出数据集间存在着复杂非线性时序上的关系,通过用基于鲁棒LS-SVM的ARMA模型预报铁水中硅的含量,从而达到了预测高炉热状态的目的。说明了该模型在对非线性时间序列预测精度和稳定性上具有明显的优越性,为稳定钢铁质量和生产工艺创造了良好条件。

关 键 词:时序模型  鲁棒  最小二乘支持向量机  高炉热状态
文章编号:1004-731X(2007)08-1780-05
收稿时间:2006-03-04
修稿时间:2006-08-01

Research of ARMA Time Series Model Based on Robust LS-SVM
WANG Hua-qiu,LAO Xiao-feng,CAO Chang-xiu,LI Liang. Research of ARMA Time Series Model Based on Robust LS-SVM[J]. Journal of System Simulation, 2007, 19(8): 1780-1784
Authors:WANG Hua-qiu  LAO Xiao-feng  CAO Chang-xiu  LI Liang
Affiliation:1.Computer College of ChongQing University, Chongqing 400044, China; 2.Automation College of ChongQing University, Chongqing 400044, China; 3.Computer Dept. of ChongQing Institute Technology, Chongqing 400050, China
Abstract:Time series modeling and identification techniques were analyzed and the ARMA time series model based on robust LS-SVM algorithm was proposed. In the model, the robust character and time series model parameters have been added into constrain condition of LS-SVM. In the process of computation, the model is not sensitive to the outliers and noises and accurately identifies parameters of time series model. Considering the complex nonlinear relationship of time series between the input and output data sets, the ARMA model based on robust LS-SVM was used to predict the content of silicon in molten iron to gain the heat state of blast furnace. Finally, the experiments with practical data prove that the presented model has obvious superiority in the precision and robust of nonlinear time series prediction. Thus it provides the fine condition to improve quality of steel and stabilize manufacturing craftwork.
Keywords:time series model  robust  LS-SVM  heat state of blast furnace
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号