基于消光系数的机场PM2.5质量浓度神经网络预测模型 |
| |
作者姓名: | 熊兴隆 崔雅峰 马愈昭 蒋立辉 |
| |
作者单位: | 中国民航大学 天津市智能信号与图像处理重点实验室,中国民航大学 天津市智能信号与图像处理重点实验室,中国民航大学 天津市智能信号与图像处理重点实验室,中国民航大学 天津市智能信号与图像处理重点实验室 |
| |
基金项目: | 国家自然科学基金(U1533113)、国家自然科学基金重点项目(U1433202)和中央高校基本科研业务费中国民航大学专项(3122016B001) |
| |
摘 要: | 分析了气溶胶粒径吸湿增长因子、风速和NO_2与消光系数和PM_(2.5)质量浓度之间的相关性及影响规律。提出了一种基于消光系数的机场PM_(2.5)质量浓度神经网络预测模型。首先,建立消光系数与PM_(2.5)质量浓度之间的定量关系,并分析相对湿度对其影响。然后,分析风速和NO_2对消光系数和PM_(2.5)质量浓度的影响。最后,将四项参数与PM_(2.5)质量浓度之间的复杂关系通过模糊神经网络进行学习和表达,实现PM_(2.5)质量浓度的预测。使用实测PM_(2.5)质量浓度数据对预测模型进行了对比验证。结果表明,该预测模型的预测精度较高,能较为客观的反映机场PM_(2.5)质量浓度的变化情况,这对研究颗粒物质量浓度对机场能见度的影响规律以及机场周边污染治理决策提供数据支持具有重要的意义。
|
关 键 词: | 消光系数 相对湿度 风速 颗粒物 模糊神经网络 |
收稿时间: | 2017-03-27 |
修稿时间: | 2017-03-27 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《科学技术与工程》浏览原始摘要信息 |
|
点击此处可从《科学技术与工程》下载免费的PDF全文 |
|