首页 | 本学科首页   官方微博 | 高级检索  
     检索      

三对角四阶紧致差分格式的优化和初步应用
引用本文:刘晓,王小光,李文强.三对角四阶紧致差分格式的优化和初步应用[J].科技导报(北京),2011,29(34):20-26.
作者姓名:刘晓  王小光  李文强
作者单位:河南师范大学数学与信息科学学院,河南新乡 453007
摘    要:提高数值解的精度和分辨率,有助于更精确地求解日趋复杂的工程问题.本文依据差分格式的伪波数应该在尽可能大的波数范围内接近物理波数的思想,构造了满足四阶精度的具有高分辨率的三对角紧致差分格式.一方面,它可以与近些年发展的求解(循环)三对角方程组的高效算法相结合,以更高的分辨率、更小的计算量来计算一阶导数;另一方面,与传统格...

关 键 词:紧致格式  高精度  高分辨率  小尺度波动

Optimization of Fourth-order Compact Finite Difference Triangular Scheme and Its Initial Applications
LIU Xiao,WANG Xiaoguang,LI Wenqiang.Optimization of Fourth-order Compact Finite Difference Triangular Scheme and Its Initial Applications[J].Science & Technology Review,2011,29(34):20-26.
Authors:LIU Xiao  WANG Xiaoguang  LI Wenqiang
Institution:College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan Province, China
Abstract:In order to improve the precision and resolution of a numerical scheme used to solve the complex scientific and engineering problems, it is necessary for difference scheme to resolve wave numbers with as high precision as possible. Based on this idea, a triangular compact finite difference scheme with fourth-order accuracy and high resolution is proposed. On one hand, this compact scheme could be efficiently solved by the algorithms which are recently developed to solve the (cyclic) triangular equations, therefore, the first derivation could be efficiently calculated by the optimized compact difference scheme with higher resolution and less amount of calculation; on the other hand, it has a maximum accuracy wave number of 2.5761, comparing with that of 1.13097 by using traditional schemes. In short, the optimized compact difference scheme is more appropriate to simulate small scale fluctuations in fluid dynamics. Numerical computation experiments illustrate that(1) even though the optimized scheme is still fourth-order, it has a smaller error than that of traditional fourth-order compact finite difference, especially for the small scale fluctuations; (2) for the problems involving traveling wave, the optimized scheme is able to simulate wave propagation behavior more accurately. Both the theoretical analysis and numerical experiments indicate that the optimized compact finite difference scheme is more appropriate to resolve the problems with small scale fluctuations.
Keywords:
点击此处可从《科技导报(北京)》浏览原始摘要信息
点击此处可从《科技导报(北京)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号