首页 | 本学科首页   官方微博 | 高级检索  
     

基于模拟退火的进化算法性能对比研究
引用本文:汪灵枝,;申锦标,;赵世安. 基于模拟退火的进化算法性能对比研究[J]. 广西右江民族师专学报, 2007, 0(3): 43-47
作者姓名:汪灵枝,  申锦标,  赵世安
作者单位:[1]柳州师范高等专科学校数学与计算机科学系,广西柳州545004; [2]广西大学数学与信息科学学院,广西南宁530004; [3]百色学院数学与计算机科学系,广西百色533000
基金项目:基金项目:广西教育厅资助项目(200508234).
摘    要:
将模拟退火算法和遗传算法、粒子群优化算法分别进行结合,形成模拟退火-遗传算法以及模拟退火-粒子群优化算法,并作性能对比分析。研究结果表明,这两种算法都在进化代数和全局寻优能力方面有较大突破,在找寻最佳个体解的效率士,模拟退火-粒子群优化算法更突出。

关 键 词:模拟退火  遗传算法  粒子群优化算法

On Evolution Algorithm Ability Based on Simulated Annealing
Affiliation:WANG Ling-zhi , SHEN Jin-biao, ZHAO Shi-an (1. Department of Mathematics and Computer Science, Liuzhou Teachers College, Liuzhou 545004, China; 2. College of Mathematics and Computer Science, Guangx University, Nanning 530004, China; 3. Department of Mathematics and Computer Science, Baise University, Baise 533000, China)
Abstract:
This paper presents the respectively combining of simulation annealing with genetic
algorithms and particle swarm optimization, forming SA-GA and SA-PSO algorithms, and corn-pares and analyzes their ability. The results show that the two algorithms, compared with SA-PSO algorithm, have a greater breakthrough in evolution algebra and overall situation optimization abili-ty, and they are better in seeking for the most precise individual result.
Keywords:Simulation Annealing  Genetic Algorithm  Particle Swarm Optimization
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号