首页 | 本学科首页   官方微博 | 高级检索  
     

四维球面上Grassmann丛的一些性质
作者姓名:莫小欢
作者单位:复旦大学数学研究所 上海200433
摘    要:1.设S~4表示四维球面,G_2(TS~4)为S~4上的具有通常的黎曼度量与殆复结构的Grassmann丛.设k是G_2(TS~4)的K(?)hler形式.若dk的(1.2)对部分恒为零,则称G_2(TS~4)为(1.2)辛流形.在本文中,我们将证明下面的结果:定理 设h_ 和J~G_±分别是G_2(TS~4)上的Riemann度量和殆复结构(t>0).则(G_2(TS~4)·J_~G_±·h_ )对于任何正数t不可能是(1.2)辛流形.特别,它不能成为K(?)hler流形.

关 键 词:球面 格拉斯曼丛 殆复结构 辛流形
收稿时间:1992-09-16
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号